Generation of Triangulations of the Sphere

By Robert Bowen and Stephen Fisk

It is easily seen that there is only one triangulation of the sphere with four vertices and one with five. This paper concerns an algorithm for finding all (nonisomorphic) triangulations of the 2-sphere with N vertices from those with $N-1$. "Triangulation" shall always refer to a triangulation of the 2-sphere. First we develop a method for generating all triangulations with N vertices which may yield several triangulations of the same isomorphism type, and then we describe an isomorphism routine for eliminating these duplications.

Let T be a triangulation with $N \geq 5$ vertices, E edges, and F faces. Let X_k denote the number of vertices of T of valency k. Then $3F = 2E$ as each face is a triangle and each edge is on two faces, and $2E = \sum kX_k$ as each edge is incident to two vertices. Hence $6F - 6E = -2E = -\sum kX_k$ and by Euler's formula we have

$$12 = 6N + 6F - 6E = 6N - \sum kX_k = \sum X_k(6 - k).$$

Since $\sum X_k(6 - k)$ is positive, T must have a vertex of valency less than six. Because every edge of T must lie on two distinct triangular faces, each vertex must have valency greater than two. Letting Q be a vertex of minimal valency, Q must have valency three, four, or five.

Case 1. Suppose Q has valency three. Then, about Q, T has the form shown in Fig. 1. Removing Q and the edges QP_1, we obtain a triangulation T' with $N - 4$ vertices. Thus we obtain T if we add the point Q to the center of the face $P_1P_2P_3$ and add the edges QP_2 ($k = 1, 2, 3$).

Case 2. Suppose Q has valency four. Then, about Q, T has the form shown in Fig. 2. By the Jordan curve theorem either P_1 is not adjacent to P_2 or P_2 is not adjacent to P_3; say P_1 is not adjacent to P_2. Then, removing Q and edges QP_1, P_2P_3 we have the quadrilateral $P_1P_2P_3P_1$, we obtain a triangulation T' with $N - 1$ vertices. The slight complication here is needed to ensure that T' is a triangulation; for if P_1 were adjacent to P_2 in T, then T' would have multiple edges and would not be a triangulation. We now obtain T from T' by reversing the process.

Case 3. Suppose Q has valency five. We claim some P_i is adjacent to no P_j other than the two shown (Fig. 3). Otherwise P_1 would be adjacent to P_2 or P_3, say P_3. Then by the Jordan curve theorem, P_2 could be adjacent to neither P_1, nor P_3. Hence we may assume P_2 or P_3. Now removing P_3 or P_4, we obtain a triangulation T'.

We thus have three optimal triangulations of $N - 1$ vertices.

Now suppose T_1 and T_2 of T_3 according to the larger, and finally the third, T_4. Then let $P_1P_2P_3$ be in M_1. Then for some Q, Q, in M_1. Suppose the whole vertex Q.

Moving clockwise from Q_1, T_1 are triangles, Q_1 is adjacent to a face with P_1, and P_1 and P_2.

and $F(Q)$ is adjacent to F. Continuing in this manner Q_1. Each of these vertices peating the argument at the (theoretical) distance two from Q_1, and testing each F for isomorphism F extending F^*.

In applying the general

Received October 25, 1965.
Generating Triangulations of the Sphere

Let \(T \) be a triangulation of the sphere. If \(T \) has the form shown in Figure 1, then by removing \(Q \) and then adding edges \(P_1P_2 \) and \(P_3P_4 \), we obtain a triangulation \(T' \). Reversing the process, we again obtain \(T \).

We now have three operations which when applied in all possible ways to \(T \) will yield all triangulations of \(N - 1 \) vertices (\(N \geq 5 \)).

Now suppose \(T_1 \) and \(T_2 \) are two triangulations of \(N \) vertices. Ordering the faces of \(T \) according to the largest valency of a vertex of the face, then the second largest, and finally the third valency, let \(M_k \) be the set of maximal faces of \(T \).

Let \(P_1P_2P_3 \) be in \(T \). Then an isomorphism \(F \) of \(T_1 \) onto \(T_2 \) must have \(F(Q_i) = P_j \) for some \(Q_i \). Let \(Q_1Q_2Q_3 \) be in \(T_1 \). Suppose \(F^* \) maps \(Q_i \) into \(P_j \) and we wish to extend \(F^* \) to a map of the whole vertex set of \(T_1 \) which induces an isomorphism of \(T_1 \) onto \(T_2 \).

Moving clockwise from \(Q_1 \), let \(Q_2 \) be the next point adjacent to \(Q_3 \). As \(T_2 \) is not adjacent to \(Q_2 \). Let \(P_1 \) be the vertex other than \(P_2 \) of \(T_2 \) which lies on a face with \(P_3 \) and \(P_4 \). If \(F \) is an isomorphism extending \(F^* \), then as

\[
F(Q_i) \neq F(Q_j) = P_k
\]

and \(F(Q_i) \) is adjacent to \(F(Q_j) = P_k \) and \(F(Q_k) = P_l \), we must have \(F(Q_i) = P_m \). Continuing in this manner we see that \(F \) is determined at every vertex adjacent to \(Q_1 \). Each of these vertices then lies on a face at which \(F \) is determined; hence repeating the argument at these vertices, \(F \) is determined at all vertices at a (graph theoretical) distance two from \(Q_1 \). By induction this method determines the isomorphism \(F \) extending \(F^* \) if it exists. Applying this algorithm to all possible \(F^* \)s and testing each \(F \) for isomorphism, we decide whether \(T_1 \) and \(T_2 \) are isomorphic.

In applying the generation algorithm to \(T' \) with \(N - 1 \) vertices, we do not use
the third operation described above if its yields a triangulation with a valency three or four, or the second if it gives a triangulation with a valency three; for such triangulations will be obtained by applying earlier operations to another triangulation of \(N - 1 \) vertices. From formula (1) we see that if \(T \) has no valency three or four, then it has at least twelve vertices of valency five. A triangulation with twelve vertices of valency five is a regular polyhedron; there is only one such, the well-known icosahedron. Thus in obtaining all triangulations with \(N \leq 12 \) vertices one need never apply the third operation, which in practice is by far the most time consuming. The generation of all such triangulations was carried out on the IBM 7094 in approximately 1½ hours of computing time. As a check, the computation was carried out for \(N \leq 11 \) with a general graph isomorphism routine (see [1] for a brief description of this routine). D. W. Grace [2] generated all trivalent polyhedra (the dual of triangulations) with 11 or fewer faces and our numbers check with his to that point. In the table below \(L(N) \) is the number of triangulations and \(M(N) \) the number with no valency three with \(N \) vertices.

<table>
<thead>
<tr>
<th>(N)</th>
<th>(L(N))</th>
<th>(M(N))</th>
<th>(N)</th>
<th>(L(N))</th>
<th>(M(N))</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1/2</td>
<td>1</td>
<td>10</td>
<td>233</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>1</td>
<td>11</td>
<td>1249</td>
<td>34</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>2</td>
<td>12</td>
<td>7595</td>
<td>130</td>
</tr>
<tr>
<td>8</td>
<td>50</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The authors are indebted to the University of California (Berkeley) Computer Center for the use of its machines.

University of California
Berkeley, California 94720

Conversion of Radix Repr

Introduction. Let \(m_i \) be the moduli, the ordered set \((x_1, x_2, \ldots)\) a residue class and \(n \) a modular arithmetic. We have suggested [1], [5]. It is [2], [6].

A central question is to find the number of triads \((b_0, b_1, b_2, \ldots)\). For this purpose we have used the representation with respect to the form

\[n = b_0 + \sum a_i b_i \]

where \(0 \leq b_i < m_i \), \(i = 0, 1, \ldots, s \) and \((b_0, b_1, b_2, \ldots) \) is obtained iteratively.

We propose here (see [7]) a method of constructing \((x_1, x_2, \ldots)\) by \(A_1 \), \(A_2 \), \(A_3 \), \(\ldots \), \(A_s \).

This method is simple and efficient.

Definition 1. Let \(A = (a_{ij}) \) be a matrix, whose rows are the moduli \(m_i \) and whose columns are the integer representations of the used moduli.

<table>
<thead>
<tr>
<th>(b_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

This matrix multiplication is defined in the following way:

Lemma 1. Let \(E = (e_{ij}) \) be a matrix with \(e_{ij} = 1 \) only if \(i = j \).

Let \(D \) be a diagonal matrix, \(A \) an arbitrary matrix and \(A \) an arbitrary matrix

\[(X) = (\cdots (X_D) \cdots) \]

Proof. Properties (1)

Received May 18, 1963.