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The Small Connected Simple Graphs
(v<7)

Facts (theorems), procedures (algorithms), and sources for both (problems) in graph
theory have strange names: the Traveling Salesman Problem, the Chinese Postman
Problem, several kinds of Dancing and Handshaking Theorems, the Greedy Algorithm,
the Utilities Problem, the Seeded Tournament Algorithm, the Feasible Flow Theorem. All
of these and many more describe basic properties of graphs that apply directly to prob-
lems found in scheduling. storage, communication, and travel networks. But the appli-
cation of these ideas about graphs o real networks can be made only by virtue of some
well-defined correspondence between the real entities and the dots and between the
real relationships and the lines. These dotfs and lines or vertices and edges are shown in
this chapter in every possible connected combination up to seven vertices.

The lists in the following pages have been left devoid of all notation so that readers
may make their own notations according to their particular needs, and so that the visual
and conceptual impact of 996 graphs of connective space will be as plain as possible.

There is, however, a scheme 10 their arrangement. Graphs of a fixed number of
vertices are clustered into a row of columns, each column enumerating a family of
graphs of a fixed number of edges. On page 7 the rows of columns are clearly evident.

For instance this column catalogs the connected
graphs with 5 vertices and 7 edges.
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But in the block of 7-point graphs an edge family can cover as much as a two-page
spread.

A few moments inspection reveals the first of a potentially infinite number of patterns
found in connected graphs: for each number of vertices the first column consists of
frees, connected graphs without cycles (shown separately in Chapter 3), and the
second column consists of single-cycled graphs. From the third column on, more than
one cycle can be combined in ways yielding more than two cycles.

The final column of each set always consists of a single graph known as the complete
graph on v vertices and denoted Ky. It is complete because every pair of vertices is
connected by an edge — all possible connections have been made. How many edges
does a complete graph have? Since an edge is essentially a pairing of vertices, this is
equivalent to the question: How many pairs are there in a set of v elements?

v

Conventionally denoted by (2) . the number of pairs can be calculated by
imagining choosing two things out of v things. The choice of the first can be made inv
ways — there are v vertices to choose from — and for each possible first choice there
are v -1 leff for the second choice, thus v ~ 1 ways to choose. The words for each
suggest multiplying v by v - 1 to obtain the number of ways of making two choices. That
done, we have counted every vertex pair twice. For instance if A and B are names of
vertices, we have counted the pairs AB and BA both. So we divide the result by 2, since
edges specify no direction.

Theorem 2 The number of edges e in a complete graph Ky is related to the
number of vertices v as
viv-1)
2

e

The penultimate column also contains only one graph, and the column before that
contains two. Since all edges are present in the complete graph, all are abstractly
equivalent, and the removal of one is equivalent to the removal of any other. Removing
two edges, however, can be done in two ways: either the edges share a vertex or do
not. Establishing the numiber of graphs in any given column (the number of graphs with
given v and e) is a more difficult task, involving George Polya’s theory of counting. One
can see in the following pages that the total number of connected simple graphs on a
given number of vertices is growing at an alarming rate. For instance, on eleven vertices
there are over a billion of them.

When using these charts, recall that a cartouche encapsulates a collection of views
of asingle graph.
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