on Probabilities, Berlin, 1960.

1953), pp. 860-864.

c. Jap., 1956.
ertain Markov processes, Third Berk.
pp. 113–124.
rkov chains admitting an infinite in-

, J. Rat. Mech. Anal., vol. 3(1954)

asures of ergodic Markov processes,

esses, Proc. Amer. Math. Soc., vol.

Stat., vol. 38(1967), pp. 588-592.

ses recurrent in the sense of Harris.

ve stationary measures, Ann. Math.

ocess, Z. Wahrscheiss., vol. 6(1966).

h. Stat., vol. 37(1966), pp. 729-732. lités, Paris, 1965.

ENUMERATION OF SYMMETRIC MATRICES

By Hansraj Gupta

1. Introduction. Let H(n, r) denote the number of $n \times n$ matrices $[a_{ij}]$ where the a_{ij} are non-negative integers that satisfy

(1.1)
$$\sum_{i=1}^{n} a_{ij} = r = \sum_{j=1}^{n} a_{ij}, \quad 1 \leq i, \quad j \leq n.$$

Anand, Dumir and Gupta [1] conjectured that for a given n and any r,

(1.2)
$$H(n,r) = \sum_{i=0}^{\binom{n-1}{2}} c_i \binom{r+n+t-1}{n+2t-1},$$

where the c_i depend on n alone. This would imply that

(1.3)
$$\sum_{r=0}^{\infty} H(n, r) x^{r} = (1 - x)^{-(n-1)^{n-1}} \psi(x),$$

where $\psi(x)$ is a symmetric polynomial in x of degree (n-1) (n-2). It appears that the coefficients in $\psi(x)$ are positive integers. In particular, we have

$$\sum_{r=0}^{\infty} H(1, r)x^{r} = (1 - x)^{-1},$$

$$\sum_{r=0}^{\infty} H(2, r)x^{r} = (1 - x)^{-2},$$

$$\sum_{r=0}^{\infty} H(3, r)x^{r} = (1 - x)^{-5}(1 + x + x^{2})$$

and probably

$$\sum_{r=0}^{\infty} H(4,r)x^{r} = (1-x)^{-10}(1+14x+87x^{2}+148x^{3}+87x^{4}+14x^{5}+x^{6}).$$

Carlitz [2] has considered the analogous problem for symmetric matrices. Here, we shall be concerned with the case r = 2, not considered by Carlitz.

2. Let S(n) denote the number of $n \times n$ symmetric matrices $[a_{ij}]$, where the a_{ij} satisfy

$$a_{ij} = a_{ji} = 0, 1 \text{ or } 2; \qquad 1 \le i, j \le n;$$

and

Received May 1, 1967.

$$\frac{(n-2)\gamma(n-1)}{\gamma(n-1)}$$
 We, the (3.3)

ENUM

(a) When
$$a_{22} = 1 = a_3$$

(a) When
$$a_{22} = 1 = a_3$$

The contribution to $\delta(n)$ is

b) When
$$a_{23} = 1 = a_3$$

(b) When $a_{23} = 1 = a_{32}$

The contribution to $\delta(n)$ is

(d) When the matrix is r

11(

001

Removing the first two or th left with an $(n-2) \times (n-1)$

The contribution to $\delta(n)$ in ϵ

(e) Finally, when the mati

$$\sum_{i=1}^n a_{ij} = 2.$$

With regard to the elements in the first row, we need consider matrices of the following four forms only:

(i)
$$a_{11} = 2$$
; $a_{1i} = 0$, $i \neq 1$;

(ii)
$$a_{12} = 2$$
; $a_{1j} = 0$, $j \neq 2$;

(iii)
$$a_{11} = a_{12} = 1$$
; $a_{1j} = 0, j \neq 1, 2$;

(iv)
$$a_{12} = a_{13} = 1$$
; $a_{1j} = 0, j \neq 2, 3$.

In what follows, to illustrate our points, we shall give only the relevant portions of the matrices under consideration. If we denote the number of matrices of types (i) – (iv), in our set, by $\alpha(n)$, $\beta(n)$, $\gamma(n)$ and $\delta(n)$ respectively; then it is easy to see that

(2.1)
$$S(n) = \alpha(n) + (n-1)\{\beta(n) + \gamma(n)\} + {n-1 \choose 2} \delta(n).$$

3. Relations between $\alpha(n)$, $\beta(n)$, $\gamma(n)$, $\delta(n)$ and S(n).

3.1. We readily see that

(3.1)
$$\alpha(n) = S(n-1).$$

For removing the first row and the first column from any matrix of type (i), we are left with a desirable matrix with (n-1) rows and as many columns.

3.2. Again, we have

$$\beta(n) = S(n-2).$$

For removing the first two rows and the first two columns from any matrix of type (ii), we are left with a desirable matrix with (n-2) rows and an equal number of columns.

- 3.3. In the case of matrices of the type (iii), we have to consider two subcases:
- (a) When $a_{22} = 1$. The contribution to $\gamma(n)$ in this case is S(n-2).
- (b) When $a_{22} = 0$. Removing the first row and the first column, we are left with a matrix reducible to the form

If we replace the zero at the top left corner by 1, this becomes an (n-1) X (n-1) matrix of type (iii). The contribution to $\gamma(n)$ in this case, therefore, is e need consider matrices of the

give only the relevant portions of the number of matrices of $\delta(n)$ respectively; then it is

$$+\binom{n-1}{2}\delta(n).$$

1 S(n).

rom any matrix of type (i), we

c columns from any matrix of h(n-2) rows and an equal

have to consider two subcases:

- a this case is S(n-2).
- d the first column, we are left

, this becomes an $(n-1) \times \gamma(n)$ in this case, therefore, is

(3.3) We, thus, have $\gamma(n-2) \gamma(n-1).$ $\gamma(n) = S(n-2) + (n-2) \gamma(n-1).$

3.4. In the case of matrices of type (iv), a number of subcases arise. We consider these and note the contribution to $\delta(n)$ in each case.

(a) When $a_{22} = 1 = a_{33}$. In this case, the matrix is of the form:

The contribution to $\delta(n)$ is S(n-3).

- (b) When $a_{23} = 1 = a_{32}$. The contribution to $\delta(n)$ is again S(n-3).
- (c) When the matrix is reducible to the form:

The contribution to $\delta(n)$ is (n-3) S(n-4).

(d) When the matrix is reducible to one of the two forms:

Removing the first two or the first and third rows and the same columns, we are left with an $(n-2) \times (n-2)$ matrix of the type:

The contribution to $\delta(n)$ in either case, is $(n-3)\gamma(n-2)$.

(e) Finally, when the matrix is reducible to one of the two forms:

The contribution to $\delta(n)$ in either case, is (n-3) (n-4)/2 times what it would be from the $(n-2) \times (n-2)$ matrix

It is, therefore, (n-3) (n-4) $\delta(n)/2$ in each case. We, thus, have (3.4) $\delta(n)=2$ S(n-3)+(n-3) S(n-4)+2 (n-3) $\gamma(n-2)+(n-3)$ (n-4) $\delta(n-2)$, which in view of (3.3),

$$S(n) = (n-3) S(n-4) + 2 \gamma(n-1) + (n-3) (n-4) \delta(n-2).$$

4. Recursion formulae for S(n) and $\gamma(n)$. The results obtained in §3, can be written:

(4.1)
$$S(n) = \gamma(n+2) - n \gamma(n+1),$$

(4.2)
$$\delta(n) - (n-3)(n-4)\delta(n-2) = (n-3)S(n-4) + 2\gamma(n-1).$$

Also, from (2.1) and (3.3), we have

(4.3)
$${n-1 \choose 2} \delta(n) = S(n) - (n-1)S(n-2) - \gamma(n+1).$$

Multiplying the two sides of (4.2) by (n-1) (n-2)/2, and making use of (4.3), we get

$$S(n) - (n-1)S(n-2) - \gamma(n+1) - (n-1)(n-2)$$

$$\{S(n-2) - (n-3)S(n-4) - \gamma(n-1)\}$$

$$= (1/2)(n-1)(n-2)(n-3)S(n-4) + (n-1)(n-2)\gamma(n-1).$$

Hence

(4.4)
$$\gamma(n+1) = S(n) - (n-1)^2 S(n-2) + (1/2) (n-1) (n-2) (n-3) S(n-4).$$

From (4.1) and (4.4), we now have

ENUN

$$(4.5)$$
 $S(n+1) = (n-1)$

and

$$(4.6) \quad \gamma(n+2) = (n+1)$$

Since
$$S(1) = 1 = \gamma(2)$$
, we

and

$$S(-m) =$$

5. As an analogous prob $1 \le i, j \le n$, such that

Defining $\gamma^*(n)$ and $\delta^*(n)$ in 1 sections, we get

(5.1)
$$S^*(n) = (n-1)\gamma^*(n)$$

$$(5.2) \gamma^*(n) = S^*(n-2) -$$

and

(5.3)
$$\delta^*(n) = 2\gamma^*(n-1)$$
.

Eliminating $\gamma^*(n)$ and $\delta^*(n)$ cular difficulty

$$(5.4) S^*(n+1) = n \bigg\{ S^*(n+1) \bigg\}$$

We take $S^*(0) = 1$ and $S^*(-1)$

6. Generating functions.

6.1. Let T(n) denote the nu such that

0 · ·

-4)/2 times what it would

We, thus, have (3.4)
$$\delta(n) = -2 + (n-3)(n-4)$$

$$(n-4) \delta(n-2).$$

Its obtained in §3, can be

$$n \gamma (n + 1),$$

$$S(n-4) + 2\gamma(n-1)$$
.

$$-\gamma(n+1)$$
.

2)/2, and making use of

1) |
$$(n-1)(n-2)\gamma(n-1)$$
.

$$-2) (n-3) S(n-4).$$

(4.5)
$$S(n+1) = (n+1)S(n) + n^2S(n-1) - n(n-1)^2S(n-2) - 3\binom{n}{3}S(n-3) + 12\binom{n}{4}S(n-4);$$

and

$$(4.6) \gamma(n+2) = (n+1)\gamma(n+1) + (n-1)^2\gamma(n) - (n-1)^2(n-2)\gamma(n-1) - 3\binom{n-1}{3}\gamma(n-2) + 12\binom{n-1}{4}\gamma(n-3).$$

Since $S(1) = 1 = \gamma(2)$, we take

$$S(0) = 1 = \gamma(1);$$

and

$$S(-m) = 0 \text{ for } m > 0, \gamma(-m) = 0 \text{ for } m \ge 0.$$

5. As an analogous problem, we find $S^*(n)$, the number of matrices $[a_{ij}]$, $1 \le i, j \le n$, such that

$$a_{ij} = a_{ji} = 0 \text{ or } 1,$$

$$\sum_{i=1}^{n} a_{ij} = 2.$$

Defining $\gamma^*(n)$ and $\delta^*(n)$ in the obvious way, and proceeding as in the preceding sections, we get

(5.1)
$$S^*(n) = (n-1)\gamma^*(n) + (1/2)(n-1)(n-2) \delta^*(n);$$

(5.2)
$$\gamma^*(n) = S^*(n-2) + (n-2)\gamma^*(n-1);$$
 and

(5.3)
$$\delta^*(n) = 2\gamma^*(n-1) + (n-3)S^*(n-4) + (n-3)(n-4) \delta^*(n-2).$$

Eliminating $\gamma^*(n)$ and $\delta^*(n)$ from these relations, we obtain without any particular difficulty

(5.4)
$$S^*(n+1) = n \left\{ S^*(n) + nS^*(n-1) - (n-1)(n-3)S^*(n-2) - \binom{n-1}{2} S^*(n-3) - 3\binom{n-1}{3} S^*(n-4) \right\}.$$

We take $S^*(0) = 1$ and $S^*(-m) = 0$ for m > 0.

6. Generating functions.

6.1. Let T(n) denote the number of $n \times n$ symmetric matrices $[a_{ij}]$ which are such that

$$a_{i} = 0 \text{ or } 1, 1 \leq i, j \leq n,$$

and

$$\sum_{i=1}^{n} a_{i,i} = 1 = \sum_{j=1}^{n} a_{i,j}.$$

Then, as Carlitz has shown,

(6.1)
$$h(x) = \sum_{n=0}^{\infty} \frac{T(n)}{n!} x^n = \exp\left(x + \frac{x^2}{2}\right).$$

6.2. Let

$$f(x) = \sum_{n=0}^{\infty} \frac{S(n)}{n!} x^n$$
, with $f(0) = 1$.

Then, in view of (4.5), we have

$$(1-x-x^2+x^3) f'(x) = (1+x-x^2-\tfrac{1}{2}x^3+\tfrac{1}{2}x^4) f(x).$$

This gives

(6.2)
$$\frac{f'(x)}{f(x)} = (1 - x^2 + \frac{1}{2}x^3)/(1 - x)^2 = \frac{1}{2}\{x + (1 - x)^{-1} + (1 - x)^{-2}\}.$$

Hence

(6.3)
$$f(x) = (1-x)^{-\frac{1}{2}} \exp\left(\frac{x^2}{4} + \frac{x}{2(1-x)}\right).$$

6.3. Let

$$g(x) = \sum_{n=0}^{\infty} \frac{S^*(n)}{n!} x^n$$
, with $g(0) = 1$.

Then (5.4) gives

(6.4)
$$g(x) = (1-x)^{-\frac{1}{4}} \exp\left(-\frac{x^2}{4} - x + \frac{x}{2(1-x)}\right).$$

From (6.1), (6.3) and (6.4), we have the interesting relation:

$$f(x) = g(x) h(x);$$

or what is the same thing

(6.6)
$$S(n) = \sum_{k=0}^{n} {n \choose k} S^*(n-k) T(k).$$

As a direct consequence of (6.2), we have

(6.7)
$$S(n+1) = (2n+1)S(n) - \binom{n}{2} [2\{S(n-1) + S(n-2)\} - (n-2)S(n-3)].$$

Similarly

$$(6.8) S^*(n+1) = n$$

These formulae are certain

7. For ready reference, given below.

n	S(n)
0	1
1	1
2	3
3	11
4	56
5	348
6	2578

- 1. H. Anand, V. C. Dumir, H. vol. 33(1966), pp. 757-
- 2. L. CARLITZ, Enumeration of

Allahabad University Allahabad, India Similarly

(6.8)
$$S^*(n+1) = n \left\{ 2S^*(n) - (n-2)S^*(n-1) - {n-1 \choose 2}S^*(n-3) \right\}.$$

These formulae are certainly an improvement on those given in §4 and §5.

7. For ready reference, a few values of S(n), $S^*(n)$ and $\gamma(n)$, $\gamma^*(n)$, T(n) are given below.

n	S(n)	$S^*(n)$	T(n)	$\gamma(n)$	$\gamma^*(n)$
0	1	1	1	0	0
1	1	0	1	1	1
2	3	1	2	1	1
3	11	4	4	2	1
4	56	18	10	7	3
5	348	112	26	32	13
6	2578	820	76	184	70
	985	986	REFERENCES !	987	1495

- 1. H. Anand, V. C. Dumir, H. Gupta, A combinatorial distribution problem, Duke Math. J., vol. 33(1966), pp. 757-770.
- 2. L. Carlitz, Enumeration of symmetric arrays, Duke Math. J., vol. 33(1966), pp. 771-782.

ALLAHABAD UNIVERSITY ALLAHABAD, INDIA

$$S(n)$$
 no of mas now symmetric, clerch 0, 1 or 2
row sum; = 2 Recurrence (6.7)
 $S'(n)$ closers 0 or 1 orly, due same Type 2.

$$\left(+\frac{x^2}{2} \right)$$

(0) = 1.

$$x^3 + \frac{1}{2} x^4$$
) $f(x)$.

$$+(1-x)^{-1}+(1-x)^{-2}$$
.

$$\frac{x}{(1-x)}$$
.

$$\gamma(0)=1.$$

$$+\frac{x}{2(1-x)}$$
.

g relation:

T(k).

$$(n-2)$$
 - $(n-2)S(n-3)$