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(1.2) Hn,r) = ) ¢

ENUMERATION OF SYMMETRIC MATRICES

By Hansrasy Guera

1. Introduction. ILet H(n, 7) denote the number of n X n matrices {a.,]
where the a,; are non-negative integers that satisfy

{1.1) a;=r= 2 a;, 1< j<n.

(3 i=1
Anand, Dumir and Gupta [1] conjectured that for a given n and any r,
n—1
(& (r+n+yt—-1>
Nnt+2t-11/"
where the ¢, depend on n alone. This would imply that

=0

13 > Hin, )z = (L — 27"y,

r=0

where ¢(z) is & symmetric polynomial in z of degree (n — 1) (n — 2). It appears
that the coeflicients in ¢(r) are positive integers. In particular, we have

S HQ, N = (1 -2,

r=0

> HE, D = (1~ 27,

r=0

i H3,nz" =1 — 271 +z + 2%

r=0

and probably

SCH@, 1z = (1 — 2)7°(1 + 14z + 872" + 1482° + 87x* + 142° + 2°).

r=0

Carlitz [2] has considered the analogous problem for symmetric matrices. Here,
we shall be concerned with the case r = 2, not considered by Carlitz.

2. Let S(n) denote the number of n X n symmetric matrices [a;;], where the

a;; 'satisfy
——— .
a;; = a;; = 0,1o0r2; 1<4,j<m
and
Received May 1, 1967.
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Z a; = 2.
i1
————————
With regard to the elements in the first row, we need consider matrices of the

following four forms only:
() an=2a;=07]%#1I;
() @, =250, =0,j %2
(i) @, =a, =1; a; =0,7=1,2;
(v) @y = a3 = 1; a; = 0,523

In what follows, to illustrate our points, we shall give only the relevant portions
of the matrices under consideration. If we denote the number of matrices of
types (i) — (iv), in our set, by a(n), 8(n), ¥(1) and &(n) respectively; then it is
easy to see that '

@) ’ St) = o) + (0 — DB + 2} + (* 1) o).

3. Relations between «(n), B(n), y(n), 8(n) and S(n).
3.1. We readily see that
3.1) a(n) = S(n — 1).

For removing the first row and the first column from any matrix of type (1), we
are left with a desirable matrix with (n — 1) rows and as many columns.
3.2. Again, we have

3.2) N ) = Stn - 9.

—

For removing the first two Tows and the first two columiis from any matrix of
type (ii), we are left with a desirable matrix with (» — 2) rows and an equal
number of columns.

3.3. In the case of matrices of the type (iii), we have to consider two subcases:

(2) When a;; = 1. The contribution to y(n) in this case is S(n — 2).
(b) When a,, = 0. Removing the first row and the first column, we are left v
with a matrix reducible to the form

01
10
00
00
00

1f we replace the zero at the top left corner by 1, this becomes an (n — 1)} X
(n — 1) matrix of type (ili). The contribution to v(n) in this case, therefore, is .

o o
oo
SO

S

- A

L

ENTUM

(n = 2)y(n — 1). We, 1
{3.3) v(n

3.4. In the case of ms
consider these and note tF

(a) When gy, = 1 = as

The contribution to 8(n) i

(b) When a,; = 1 = q
(¢) When the matrix is i

-~ Fhe contribution to o(n) is

(d) When the matrix is'n

I
(
(
1
{

OO O
OO O

iternoving the first two or th
left with an (n — 2) X (n -

The contribution to 6(n) in e

{e} Finally, when the mat:



-

‘¢ need consider matrices of the

give only the relevant portions
ute the number of matrices of
ud &(n) respectively; then it is

+(13 )

1.8(n).

rom any matrix of type (i), we
‘s avE‘ »s many columns.

o columns from any matrix of
h (n — 2) rows and an equal

have to consider two subcases:

1 this case is S(n — 2). ‘
d the first column, we are left

, this becomes an (n — 1) X
¥{(#) in this case, therefore, i3

-

+ The contribution to §(n) is (n — 3) S(n — 4).
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N7 B

{n— 2)v(n — 1)._ We, thus, have
3.3) L y(n) = S(n — 2) + (n — 2) y(n — 1). \ *

3.4. In the case of matrices of type (iv), a number of subcases arise. We
consider these and note the contribution to §(n) in each case.

(a) When ag, = 1= as;. In this case, the matrix is of the form:

01100 -
11000 -
10100 -
000
000

The contribution to é(n) is S(n — 3).

(b) When a;; = 1 = a;,. The contribution to 8(n) is again Sn — 3).
(c) When the matrix is reducible to the form:

0

OO e
O OO
O OO -
L = i e B ™)
oo C

(d) When the matrix is reducible to one of the two forms:

01100-- 01100 -
11000 - - 10010 -
10010 10100 -
601 010
000 000

Removing the first two or the first and t_hird rows and the same columns, we are
left with an (n — 2) X (n — 2) matrix of the type:

010 - -
100 - -
00
The contribution to 8(1) in either case, is (n — 3) y(n — 2). -

(e) Finally, when the matrix is reducible to one of the two forms:
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011000 - 011000 -
100100 - 100010 -
100010 - 100100 -
010 001
001 010
000 000

The contribution to 8(n) in eithe; case, is (n — 3) (n — 4)/2 times what it would
be from the (n — 2) X (n — 2) matrix

0110 - -

1
1

0

It is, therefore, (n — 3) (n — 4) 8(n)/2 in each case. We, thus, have (3.4) 3(n) =
2S(n—3)+(n—3)S(n—4)+2(n—3)7(n—2)+(n—3)(n—4}
5(n — 2), which in view of (3.3), )

g("‘) = (”—3)S(n—4)+27(n— D+ (m—3) (n—4)sn— 2). \

A 2
4. Recursion formulae for S(n) and y(n). The results obtained in §3, can be i
written: »
(4.1) S(n) = v(n 4+ 2) — nyn + 1),

(4.2) 8n) — (n — 3) (n — ) s(n —2) = (n—3) Sn — 4) + 24 — 1).
Also, from (2.1) and (3.3), we have

(4.3) (n ; 1) ) = S) — (n — DS® — 2) — y(n + 1).

‘Multiplying thé two sides of (4.2) by (n — 1) (n — 2)/2, and making use of
(4.3), we get ‘ . _
S0~ - 1DSm —2) — v + 1) — (n — I)(n — 2)

1S —2) — (0 — 3)Stn — 4) — v — 1))

= /20 = D — 90 — )80 — 4) + (0 — D — 2yl — 1).

Hence _

@4)  y(+1) = S(n) — (0 — 1)* S(n — 2)
T A2 (=1 (=2 (n—3) Sn — 4).

From (4.1) and (4.4), we now have a .

ENUXN

45  Sm+1) =@ -

and

4.6) v(n + 2)

(n + 1)

Since S(1) = 1 = (2), we

and
S(—m) =

5. As an analogous prol
1 <4, 7 < n, such that

Defining v*(n) and 8*(n) in 1
sections, we get

B 80 = (0 - 1yrn
(5.2)  y*n) = S*(n - 9) -
and

(63) ) = 29*(n — 1) -
Eliminating v*(n) and §*(n) -
cular difficulty

(5.4) S*n 4 1) = n{S"(ﬂ

W_e take S* (0) = 1 and S*(-

6. Generating functions.

- 6.1. Let T(n) denote the nu
sueh that



SOoOD

— 4)/2 times what it would

\We, thus, have (3.4) 6(n) =
—2)+ -3 (n—4

(n — 4) é(n — 2).
15 obtained in §3, can he

n 7“'— 1), |

) S(h — 4) 4+ 2y(n — 1).

) — yn + 1).
- 2)/2, and making use of
2)

-
“in = Dn — 2)y(n — 1.

— %in . 3) S(n — 4)-
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{4.5) S+ 1) = (n+ DS®) +n°Stn — 1) — n(n — 1)’Stn — 2)
- :s(g),s‘(_n —3) + 12@5@ — 4);

o

and e s —

A0l Y +2) = n+ Dy(n+ 1) + 0 — D(n) — o — 1)’(n — 2vn — 1)

— 2(" B 1)7(n -y 12.(" N l)fy(n ~.

Since S(1) = 1 = v(2), we take
S(0) =1 = y(1);
and

‘ S(—m) = 0for m > 0,v(—m) = 0 form > 0. i

P— e e e s —— G T S i g

5. As an analogous problem, we find S*(n), the number of matrices [a,,],
1 < 14,7 < n, such that I

a,; = Q;; = 0 or 1,
n
Zan’ = 2.
i=1

_Defining y*(n) and §*(n) in the obvious way, and proceeding as in the preceding
sections, we get

(6.1 8*m) = (n — Dy*(n) + (1/2)(n — D(n — 2) 6*(n);

(5.9) \ Yim) = S*m — 2) + (0 — v¥in — 1);
and

(53)  #*m) = 2y*(n — 1) + (n — 3)S*(n — 4) + (n — ) — 4) o*(n — 2).

Eliminating v*(n) and 8*(n) from these relations, we obtain without any parti-
cular difficulty '

B

— e ————————

/ {5.4) S*(n + 1) =:{TS*(n) +nS*n — 1) — (n — Dn - 3)S*(n — 2) s
J

- (" 5 1)5*@ —3) - 3(" ; 1)S*(n - 4)}- ',?

We take S* (0) = 1 and S*(—m) = 0 for m > 0.

et e A el I, 0 P U B u-_.‘\r

——

6. Generating functions.

6.1. Let T'(n) denote the number of n X n s_vmmet-ric»ma.tﬂfgs [a.-!-! which are
~ sueh that - T

—
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a; =0o0rl,1<14,j<n,

and
ila;i =1= }_:a.,.
Then, as Carlitz has shown,
(6.1) h(z) = § ri?) z" = exp (x + ;—2)
6.2. Let
I(z) = Zo with  f(0) =

Then, in view of (4.5), we have

I=z2-2"+2) /@) = Q42— 2° - 37°+ 2% ().

* This gives
(6.2) g((z)) Q-2+ 3#)/01 - =fze+ Q-7 +0 —27.
Hence
(6.3) f@) = (1 — 2)” éeXp( + E(—l ))-
6.3. Let
o0 = 250 i g0) - 1
Then (5.4) gives
(6.4) 9@) = (1 — D7 exp (—% -+ m)
From (6.1), (6.3) and (6.4), we have the interesting relation:
S ®5 1@) = g(z) ha);,
or what is the same thing _
(6.6) .&m=§@ﬁw-@m¢

As a direct consequence of (6. 2), we have

- Ay, T N R

6.7  Stn+1) = (2n+ l)S(n)

‘@W“m—n+%wvn—m_%%_my

e r——

ENUM

Similarly
(6.8) S*n + 1) = n{f
These formulae are bcertair

7. Tor ready reference,
given below.

S(n)

1

1

3

11
56
348
2578

PN

o:u;uww»—-o;

1. H. Ananp, V. C. Dumir, H.
vol. 33(1966), pp. 757-;
2. L. Carvirz, Enumeration of ¢
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lO‘HN
™

©) = 1.
24 § ') f(2).
L = ) ).

7(0) = 1.

é.§HI—x)>'

o relation:

r(k).

-2 —(n—2)8(n — 3

(@
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Similarly . T n— T

———— R

‘(6.8) &n + 1) = n{?S*(n) —n—-2)S*n — 1) — (n ; 1)S’"(n - 3)}-

S

These formulae are certainly an improvement on those given in §4 and §5.

7. For ready reference, a few values of S(n), S*(n) and v(n), v*(n), T(n) are
given below.

S(n) S*(n) - T(n) v(n) v*(n)

n

0 1 1 1 0 0
1 1 0 1 1 1
2 3 1 2 1 1
3 11 4 4 2 1
4 56 18 10 7 3
5 348 112 26 32 13
6 2578 820 76 | 184 70

¥
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1. H. Ananp, V. C. Dumir, H. Guprta, A combinalorial distribution problem, Duke Math. J.,
" vol. 33(1966), pp. 757-770.
2. L. Carvirz, Enumeralion of symmelric arrays, Duke Math. J., vol. 33(1966), pp. 771-782.
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