


Arndt Compositions:
Connections with Fibonacci Numbers,

Statistics, and Generalizations

Daniel Felipe Checa Rodríguez

Universidad Nacional de Colombia
Facultad de Ciencias, Departamento de Matemáticas

Bogotá D.C., Colombia
2023



This page intentionally left blank.



Arndt Compositions:
Connections with Fibonacci Numbers,

Statistics, and Generalizations

Daniel Felipe Checa Rodríguez
 

 

Trabajo de grado presentado como requisito parcial para optar al título de:
Matemático

Director:
José Luis Ramírez Ramírez, Ph.D.

 

 

Línea de investigación:
Combinatoria enumerativa

Grupo de investigación:
DiscreMath (COL0187164)

Universidad Nacional de Colombia
Facultad de Ciencias, Departamento de Matemáticas

Bogotá D.C., Colombia
2023

https://orcid.org/0000-0002-3403-4298
https://orcid.org/0000-0002-8028-9312
https://sites.google.com/site/discremathun/


This page intentionally left blank.



In loving memory of Professor
Amalia Torres† (1971-2018), who
taught me to keep my eyes on the
prize, and showed me what a good
mathematician should be.



This page intentionally left blank.



Sometimes the questions are complicated
and the answers are simple.

Dr. Seuss



This page intentionally left blank.



Acknowledgements

The development of this project was primarily possible thanks to Professor José Luis Ramírez. I
appreciate his relevant feedback, patience, and support of my ideas from the very beginning. I
still remember when he first mentioned this problem to me. I must confess that I thought to
myself: “What more can be known about Fibonacci numbers?” A lot! How wrong I was. I am
amazed by the results achieved, and I hope the reader can also be astonished.

I express my gratitude to my alma mater, the National University of Colombia; it is unimagin-
able to have pursued my career without the support of public education. This work was carried
out with financial support from the Faculty of Sciences, QUIPU project No. 2010 1004 0198.
I am immensely thankful; they allowed me to dedicate the necessary time. Reasonably, the re-
production of this document is covered by the license CC BY-NC-ND 4.0.

I thankmy family and those who supportedme throughout and encouragedme to finish. Tomy
parents Ángela and Felipe, for their sacrifices and for giving me everything they never had. To
my brother Julián, fromwhom I learned that talent is wasted without great effort and discipline.
To my grandmother Gladys, who has been with me since tying my shoes for school until today.
To my cousin Dianny, who has guided me on the path so many times and without conditions.
To my closest friends, for all the coffee, pizza, and their listening. To all the professors who ever
taught me that the world needs people of integrity, and mathematics cannot be indifferent to
their problems.

To whoever reads this document, I also extend my thanks. I want you to know that I did it with
great care and this is for you.

The cover and decorative images of the document have been designed using Freepik images.

ix

http://www.hermes.unal.edu.co/pages/Consultas/Proyecto.xhtml?idProyecto=57340
https://creativecommons.org/licenses/by-nc-nd/4.0/


This page intentionally left blank.



Abstract
Arndt compositions are those integer compositions (x1, . . . , xk) such that x2i−1 > x2i for all
i > 0. Hopkins and Tangboonduangjit—[11]—proved that for each positive integer n, there
are fn Arndt compositions, where fn is the n-th Fibonacci number. This project aims to provide
an alternative proof of this result using generating functions and to analytically explore some
statistics and generalizations of this combinatorial object. The studied statistics encompass the
number of summands, the size of the last and first summands, the size of the largest and small-
est summands, and the number of interior lattice points and semiperimeter associated with the
bar graph of each composition. The results are diverse, including an unpublished identity of
Fibonacci numbers and new combinatorial interpretations of some sequences.

Keywords: Arndt, Integer, Compositions, Partitions, Fibonacci, Generating functions, Statistics,
Generalizations.

Resumen
Las composiciones de Arndt son aquellas composiciones de enteros (x1, . . . , xk) que satisfacen
x2i−1 > x2i para todo i > 0. Hopkins y Tangboonduangjit—[11]—probaron que para cada
entero positivo n dichas composiciones son contadas por el n-ésimo número de Fibonacci fn.
El objetivo de este proyecto es aportar una prueba alternativa de este resultado empleando fun-
ciones generatrices y de forma analítica explorar algunas estadísticas y generalizaciones de este
objeto combinatorio. Las estadísticas estudiadas abarcan el número de sumandos, el tamaño del
primer y último sumando, el tamaño del sumando más grande y más pequeño, y el número de
puntos interiores y semiperímetro del gráfico de barras asociado a cada composición. Los re-
sultados son variados, incluyendo una identidad inédita de los números de Fibonacci y nuevas
interpretaciones combinatorias de algunas sucesiones.

Palabras clave: Arndt, Enteros, Composiciones, Particiones, Fibonacci, Funciones generatrices,
Estadísticas, Generalizaciones
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Notation
C The set of complex numbers.
Z The set of integers.

Z+ The set of positive integers. No, it is notN.
E(X) The expected value—mean—of a random variableX .
V(X) The variance of a random variableX .
K[x] Polynomials in x with coefficients inK .

A,B, C, . . . Font style for a combinatorial class.
An

∗Set of elements ofA of size n.
an The cardinality ofAn.
∼ We say two sequences an ∼ bn (n → ∞) when limn→∞ an/bn = 1.

A(z) Usually, the generating function
∑

n≥0 anz
n of a given classA.

A(k) The set of elements in the classA with a given parameter of size k.
A(≥k) When it makes sense,

⋃
i≥k A(i).

A(≤k) When it makes sense,
⋃

i≤k A(i).
[zn]A(z) The coefficient of zn in the Maclaurin series expansion ofA(z), usually an.

∼= Equivalence or bijection between two combinatorial classes.
Z The atomic class.
ϵ The empty class.

Seq The sequence operator.
⌊x⌋ Floor of x, i.e., max{n ∈ Z | n ≤ x}.
⌈x⌉ Ceiling of x, i.e., min{n ∈ Z | n ≥ x}.
fn The n-th Fibonacci number.
g.f. generating function.

F (z) The g.f. of the Fibonacci numbers, z/(1− z − z2).
φ The golden ratio 1+

√
5

2
≈ 1.618 034.(

n
k

)
The binomial coefficient, n choose k.

(x1, . . . , xk) Any integer composition, with summands x1, . . . , xk. Sometimes written
in the word notation x1x2 · · · xk.

CV Coefficient of Variation, i.e., the ratio between the standard deviation
and the mean.

∗We will also denote by Ae and Ao the sets of Arndt compositions whose number of summands is,
respectively, even and odd. Do not confuse them with this notation.

xxi



xxii • Notation

The previous symbols refer to arbitrary combinatorial classes, but starting from Chapter 1, the
specific notation we will use for counting sequences related to Arndt compositions is as fol-
lows.

an Number of Arndt compositions of n.
a
(k)
n Number of k-Arndt compositions of n.

A(k)(z) G.f. of a(k)n .
b
(k)
n Number of Arndt compositions of n with k summands.

B(k)(z) G.f. of b(k)n .
B(z, u) Bivariate g.f. of b(k)n .

c
(k)
n Number of Arndt compositions of n whose last summand is k.

C(k)(z) G.f. of c(k)n .
C(z, u) Bivariate g.f. of c(k)n .

d
(k)
n Number of Arndt compositions of n whose first summand is k.

D(k)(z) G.f. of d(k)n .
i
(k)
n Number of Arndt compositions of n with k interior points.
s
(k)
n Number of Arndt compositions of n whose semiperimeter is k.
r
(k)
n Number of compositions of n such that |x2i−1 − x2i| ≥ k.

G(k)(z) G.f. of Arndt compositions whose parts are in {1, . . . , k}.
H(k)(z) G.f. of Arndt compositions whose parts are in {k, k + 1, . . .}.
L(k)(z) G.f. of Arndt compositions whose largest summand is k.
S(k)(z) G.f. of Arndt compositions whose smallest summand is k. Not related to s(k)n .
W (k)(z) G.f. of k-block Arndt compositions.

When appropriate, we will also use the superscripts (≥k) and (≤k), for example, b(≥k)
n is the number

of Arndt compositions of n with at least k parts, and so on.



Introduction

The study of integer compositions and partitions arises from a very natural question in number
theory: In howmany ways can an integer n be written as a sum of other integers? Of course, the
answer depends on whether we take into account the order of the summands or not. Therefore,
this distinction is made when they are defined.

Formally, a composition of a positive integer n is a sequence of positive numbers (x1, . . . , xk) such
that

∑k
j=1 xj = n. If we additionally require that the sequence is decreasing, i.e. x1 ≥ x2 ≥ · · · ≥

xk, then we call it a partition of n. The parameters n, k are respectively called the size and length
of the composition, and each summand xi is also known as a part.
For example, there are eight compositions of the number 4:

4 = 1 + 1 + 1 + 1 = 1 + 1 + 2 = 1 + 2 + 1 = 2 + 1 + 1 = 2 + 2 = 1 + 3 = 3 + 1,

and if we do not take order into account, there are only five partitions of this number:

4 = 1 + 1 + 1 + 1 = 2 + 2 = 2 + 1 + 1 = 3 + 1.

Clearly, there are fewer partitions than compositions. By hand, you could list the compositions
of a given integer, count them, andwrite down the counting sequence (OEIS A011782). For the
number 1 there is one, for 2 there are two, for 3 there are four, for 4 there are eight, and so on.
Youmight suspect that for each integer n, there are 2n−1 compositions, which is indeed true and
not difficult to prove.

You can simply represent n as n = 1 + 1 + 1 + · · · + 1, where there are n − 1 summation
symbols, and each composition of n depends on whether each summation is performed or not.
The number of ways to choose how many are performed is 2n−1. By the same argument, there
are
(
n−1
k−1

)
compositions that use exactly k summands.

Now the same question can be asked in the case of integer partitions, listing the possible parti-
tions and noting down their counting sequence (OEIS A000041):

1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, . . .

In this case, there is no apparent indication of what the next number in the sequence will be, and
that is because there is actually no closed formula. It is not as straightforward as in the previous
case; we cannot use the same argument. Here, it will be necessary to use generating functions to
deduce the next terms. We will see how to do this in Chapter 0.

Due to their complex structure, integer partitions have aroused greater curiositywithin themath-
ematical community. It is known that the first person to formally study them was Leonhard Eu-
ler, through generating functions, in Chapter 16 of his work Introductio in analysin infinitorum.

xxiii
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xxiv • Introduction

One of his results was the famous pentagonal number theorem, published in 1783, which states
that if p(n) is the number of partitions of n then the following recurrence holds:

p(n) =
∑
k∈Z
k ̸=0

p(n− k)(−1)k−1,

where n = n(3n−1)
2

is the generalized pentagonal number.

The initial approach by Euler gave rise to the field of additive number theory, inwhich renowned
mathematicians such as Gauss, Legendre, Jacobi, Lagrange, Hardy, and Ramanujan would later
work. The latter two are credited with a vast and brilliant array of results. The study of integer
partitions has proven useful in various areas, from algorithm analysis to cryptography, and even
in statistical mechanics—cf. [7].

This significant interest in integer partitions over compositions should not be misinterpreted;
there are also problems related to compositions that cannot be underestimated. The one we will
address in this document is one of those.

Arndt compositions are those integer compositions whose pairs of summands are in decreasing
order, meaning that the first summand is greater than the second, the third summand is greater
than the fourth, the fifth summand is greater than the sixth, and so on. If the length of the
composition is odd, we will not impose this condition on the last summand. For example, out
of the sixty-four compositions of the number 7, only thirteen of themareArndt compositions:

7 = 4 + 3

= 5 + 2

= 6 + 1

= 2 + 1 + 4

= 3 + 1 + 3

= 3 + 2 + 2

= 4 + 1 + 2

= 5 + 1 + 1

= 2 + 1 + 3 + 1

= 3 + 1 + 2 + 1

= 2 + 1 + 2 + 1 + 1.

Similarly, we can list the compositions that satisfy this property for each integer, enumerate them,
and record the counting sequence. InTable I.1—taken from [11]—, this list appears up to seven.
For simplification, each composition is represented without the plus signs, and an is the number
of Arndt compositions for each positive integer n.

Notice the counting sequence an, these appear to be the Fibonacci numbers! This was first ob-
served in 2013 by the Germanmathematician Jörg Arndt, who posted a brief entry in theOEIS
A000045 stating that these compositions are counted by the Fibonacci numbers without provid-
ing a formal proof—see Figure I.1.

In 2022, mathematicians BrianHopkins and AramTangboonduangjit published two combina-
torial proofs that verify this observation—cf. [11]. One of them consists of an explicit bijection

https://oeis.org/A000045
https://oeis.org/A000045


• xxv

n Arndt compositions of n an

1 1 1
2 2 1
3 3, 21 2
4 4, 31, 211 3
5 5, 41, 32, 311, 212 5
6 6, 51, 42, 411, 321, 312, 213, 2121 8
7 7, 61, 52, 511, 43, 421, 412, 322, 313, 3121, 214, 2131, 21211 13

Table I.1. Arndt compositions up to n = 7.

with the number of compositions with parts 1 or 2. This article describes some statistics, gener-
alizations, and open questions. Subsequently, in 2023, they published another proof through a
bijection with compositions that use odd parts—cf. [12].

As a purely interesting tidbit, in 2022, Hopkins gave a short talk about the progress they had
made before publishing the first article—cf. [10]. In it, he recounted that before undertaking
their research, he reached out to Arndt to inquire if he had a formal proof of this fact. Arndt
replied that he had probably proven it many years ago but no longer had those notes and could
not remember how to reconstruct the proof, so he invited Hopkins to claim the proof as their
own if they managed to find it. Hopkins added, as a moral, “When you prove something, post
it!”

For n >= 1, number of compositions of n where there is a drop between
every second pair of parts, starting with the first and second
part; see example. Also, a(n+1) is the number of compositions where
there is a drop between every second pair of parts, starting with
the second and third part; see example. - Joerg Arndt, May 21 2013

Figure I.1. Original entry by Jörg Arndt in theOEIS A000045.

In this project, we will present alternative proofs of this result. Through Chapter 1 we will
demonstrate via the symbolicmethod presented in [8] that the generating function for its count-
ing sequence corresponds to ∑

n≥0

anz
n =

z

1− z − z2
,

which, in turn, is the generating function for the Fibonacci numbers.

Our main objective is to provide information about statistics associated with this combinatorial
object, such as the number of summands, the size of the first and the last summands, and the size
of the largest and smallest summands. Additionally, there is recent interest in the discrete math-
ematics community in statistics on bar graphs and polyominoes. In particular, we will count the
number of interior points and perimeter in the bar graphs associated with Arndt compositions.
This is covered in Chapter 2.

The methods we will employ are advantageous because they will provide us information about
the mean and variance, recurrence relations, and asymptotic estimates of these sequences; some-
thing unknown to date for this combinatorial object.

https://oeis.org/A000045
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Regarding the counting of interior points, I described the counting of this statistic because it
proved to be challenging, and I genuinely believe it is a significant contribution to the literature
on Fibonacci numbers. But I also do it out of personal interest: Pick’s Theorem is my favorite,
and it will have a brief appearance as a connection to one of the results presented.

Finally, in Chapter 3, the document will conclude with generalizations that can arise regarding
this object, some ofwhich have already been presented in the articles byHopkins andTangboon-
duangjit.

To facilitate the reading of the text, in Appendix A, we present some algorithms in Wolfram
Mathematica. Ideally, one can verify all theorems with cumbersome computations using a com-
puter rather than by hand. Additionally, we recommend reading Appendix B, which contains
the matrices of the sequences that appear throughout the document.

This work led to some of the results shown in [5]. Additionally, it was presented in the homonymous
talks at:

⋄ XXIII Colombian Congress of Mathematics (CCM). June 8, 2023. Tunja, Colombia.
⋄ ALTENCOA 9. December 27, 2023. Cali, Colombia.

https://scm.org.co/eventos/ccm2023/
https://altencoa.correounivalle.edu.co/


Chapter 0

Preliminary Concepts

In this chapter, we will briefly study the most general methods used in analytic combinatorics to
deduce counting sequences, statistics, asymptotic estimations, among others.

If you are already familiarwith these topics, feel free to proceed toChapter 1, wherewewill intro-
duce the combinatorial object that we will emphasize in this monograph, Arndt compositions.
On the other hand, if you wish to dive into these topics more thoroughly, I highly recommend1
the texts [8], [19] and [13]. The first is an essential reference in the field and is where we will
employ the majority of the notation, and the other two concisely summarize various concepts
while maintaining formality.

0.1. Generating Functions
Generating functions can be seen as a way to encode a sequence of integers into a representing
function, and they offer several advantages, which we will explore in this section.

To do this, we first define a combinatorial class A, an enumerable set with an associated size
function that satisfies the following conditions: i) the size of each element inA is a nonnegative
integer, ii) the number of elements inA with a specific size is finite. This size function is usually
denoted by | · |.

Common examples of combinatorial classes include the aforementioned integer compositions
and partitions, subsets and permutations of elements from a finite set, tessellations, graphs, or
lattice paths. The size functions can be, in their respective contexts, the number of summands,
the number of elements, the number of points, and so on.

Under these conditions, it makes sense to defineAn as the subset ofAwhose elements have size
n. Likewise, an is defined as the cardinality of An. In this way, the generating function A(z)
associated with the classA is defined as

A(z) :=
∑
x∈A

z|x| =
∑
n≥0

anz
n.

It is worth noting that these sums will be treated as formal series, and their convergence or lack
thereof will not be relevant.
1I also recommend the online content from [8], available at [9]. There you can find lectures videos, notes and
additional exercises.

1
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We say that two classes are equivalent, represented by the symbol∼=, if the elements of each size
are in bijection. If two classes are equivalent, they will have the same generating function and
counting sequence; and vice versa. For example, if C is the class of integer compositions andW
is the class of binary words starting with zero, we have C ∼= W .

When a sequence is of exponential order, a geometric series is often used to find the generating
function. In the case of counting compositions, the generating function for this sequence is
simply

1 +
∑
n≥1

2n−1zn =
1− z

1− 2z
.

Theutility of using generating functions primarily lies in that it is not always possible to find the
general term of a sequence. Let us imagine for a moment that we are unaware of the formula
for the number of compositions. The argument for immediately finding its generating function
is based on the fact that an ordered sequence of elements from the same combinatorial object
has a generating function which is the product of the generating functions of its elements. For
example, the generating function for compositions using a single summand is

I(z) =
∑
n≥1

zn =
z

1− z
,

since for each positive integer, there is only one composition that satisfies this condition. If we
require each composition to have two summands, the corresponding generating function is

z

1− z
· z

1− z
= I(z)2,

as it is an ordered sequence of two elements counted by I(z). Similarly, the generating function
for compositions with three summands is I(z)3, and so on. By summing over all possible lengths
of compositions—including length zero—, we obtain the same generating function,

1 + I(z) + I(z)2 + I(z)3 + · · · = 1

1− I(z)
=

1

1− z
1−z

=
1− z

1− 2z
. (0.1)

What we have done is known as the symbolic method, as it allows us to translate the disjoint
union of sets into sums of their generating functions, and the concatenation of these sets into
products.

This method is not limited to counting compositions or number theory; it also has applications
in graph theory, paths, set partitions, tessellations, among others. Of course, we are skipping over
several formal details aboutwhy thismethodworks. Itmightmake sensewhy counting a disjoint
union translates into a sum, but it is not as immediately obvious why concatenation—Cartesian
product of sets—transforms into a product. Everything is explained with the rigor it deserves in
[8, §I.1].

The usual process often involves decomposing the combinatorial class under study into smaller
parts for which the generating function is known, and then translating this decomposition into
products and sums. To aid in this process, a standardized notation of classes and operators has
also been established, which facilitates this approach.
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For example, in the case of compositions, the class {•}—usually abbreviated as • or Z—and
the operator Seq are used. These represent, respectively, the class containing a single element
of weight zero and the arbitrary concatenation of objects. In this way, integer compositions are
symbolically represented by

Seq(I),

where I = Seq≥1(•) and the subscripts of the operators refer to the number of possible con-
catenations. In the case of summing over sequences of length greater than or equal to zero, we
simply use Seq, and we will represent the empty class {} as ϵ just for notation purposes, as we do
in computer science theory.

This can be extended to any combinatorial class A, with the only condition that A does not
contain elements of size zero, meaning that a0 = 0. In this case, if A has a generating function
A(z), the generating function for Seq(A) is 1

1−A(z)
.

A similar argument is used for integer partitions. Each partition of an integer n can be viewed as
amultiset—a finite set where the repetition of elements is allowed—composed of integers. Each
multiset, denoted by the operator Mset, is in bijection with a Cartesian product of sequences
of each integer:

P = Mset(I) ∼= Seq(•)× Seq(••)× Seq(• • •)× · · · ,

where •• stands for {•} × {•} and so on. Hence, the generating function for partitions corre-
sponds to

P (z) =
∏
n≥1

1

1− zn

= 1 + z + 2z2 + 3z3 + 5z4 + 7z5 + 11z6 + 15z7 + 22z8 + 30z9 + 42z10 +O(z11),

whose coefficients form the sequence we described earlier.

On the other hand, if we require that the parts of each partition be different (OEIS A000009),
it suffices to take the following Cartesian product, represented by the operator powerset, Pset,
which we will use whenever we want the possible finite subsets of a combinatorial class; in this
case, repetitions are not allowed. Then,

Pdiff ∼= Pset(I) = (ϵ+ •)× (ϵ+ ••)× (ϵ+ • • •)× · · · ,

and the generating function corresponds to

Pdiff(z) =
∏
n≥1

(1 + zn)

= 1 + z + z2 + 2z3 + 2z4 + 3z5 + 4z6 + 5z7 + 6z8 + 8z9 + 10z10 +O(z11).

Euler also demonstrated that partitions of n into odd parts are in bijection with those partitions
of n with distinct parts. The generating function for the first class corresponds to

Podd(z) =
∏

n=2k−1
k∈Z+

1

1− zn
=
∏
n≥1

1

1− z2n−1
,

https://oeis.org/A000009
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and it can be shown to be equal to Pdiff(z), because

∏
n≥1

1

1− z2n−1
=
∏
n≥1

1

1− z2n−1
· 1− z2n

1− z2n
=
∏
n≥1

1− z2n

1− zn
=
∏
n≥1

(1 + zn).

As in the case of compositions, it is also possible to restrict the number of parts to use in each
partition. Simply note that the set of partitions of n that use at most k parts is in bijection with
the set of partitions of nwhere the parts are in {1, 2, . . . , k}. This can be justified by representing
each partition using a Ferrer diagram, which involves representing each part of the partition as a
row of dots, with asmany dots as the size of that part. For example, the partition 8+5+3+3+1
is represented in the left image of Figure 0.1. In this case, exactly 5 summands are used.

Figure 0.1. Representation of the partition 8 + 5 + 3 + 3 + 1.

If we reflect this image across themain diagonal, we obtain a partitionwith parts of size atmost 5,
as shown in the right image. In general, if we take a partition of n into at most k parts, by reflect-
ing its diagram across the diagonal, we get an arbitrary partition whose parts are in {1, 2, . . . , k};
and the reverse process also holds. Therefore, the generating function for the set of partitions
with at most k parts is

P (≤k)(z) =
k∏

n=1

1

1− zn
,

and the one for the set of partitions with exactly k parts is

P (k)(z) = P (≤k)(z)− P (≤k−1)(z) = zk
k∏

n=1

1

1− zn
.

Several results on partitions can be proven using these graphical arguments. Depending on the
convenience of each situation, integer partitions and compositions can be represented as Ferrer
diagrams, Young diagrams, as bar graphs (as we will do in Chapter 1), or as a word for notation
simplification when a single digit is used for each part. For example, the above partition can be
read as the word 85331.

Finally, let us calculate the generating function for the class of partitions that use k distinct parts.
This function will become relevant in Chapter 3 when we explore one generalization of Arndt
compositions. Once again, we will use Ferrer diagrams. From each partition of n into k distinct
parts, we can extract a triangular partitionwith exactly k parts, as shown in the example in Figure
0.2.
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Figure 0.2. Triangular partition from 9542.

Note that after this procedure, an arbitrary partition with at most k parts results to the right of
this triangle. For each k, there are

(
k+1
2

)
points in the triangle. Therefore, the generating function

for partitions with exactly k distinct parts is—cf. [6, §2.5,Th. C]—

P
(k)

diff (z) = z(
k+1
2
)

k∏
n=1

1

1− zn
=

z(
k+1
2
)

(z; z)k
, (0.2)

where (a; q)k =
∏k

n=1 (1− aqn−1) denotes the q-Pochhammer symbol—see [27]. We also have
the identity

Pdiff(z) =
∏
n≥1

(1 + zn) =
∑
k≥1

z(
k+1
2
)

(z; z)k
.

0.2. Fibonacci Numbers
The Fibonacci numbers may not need an introduction; they are perhaps the most famous se-
quence, even outside the mathematical community. Formally defined as the sequence with ini-
tial values f0 = 0, f1 = 1, and for nonnegative n, it satisfies the recurrence relation fn+2 =
fn+1 + fn. The first values (OEIS A000045) of the sequence are

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, . . .

This sequence frequently appears in number theory. It also has applications in other fields, such
as computer science and biology.

Interestingly, it is named after the Italian mathematician Leonardo of Pisa, also known as Fi-
bonacci, who studied the sequence in medieval Europe. However, it had been described long
before. To date, the earliest known record is in ancient Indianmathematics. In the third century
BCE, Pingala described patterns resembling the Fibonacci sequence in his workChandahsastra,
which focused on poetic meter—[25].

In these sections, we will prove some of the most well-known results about Fibonacci numbers
and, in the process, demonstrate how generating functions can be useful when providing asymp-
totic estimates for counting sequences.

First, wewill calculate the generating function for Fibonacci numbers, whichwe callF (z). Using
the recurrence relation from the definition, we get

F (z) =
∑
n≥0

fnz
n

= z +
∑
n≥2

fnz
n

https://oeis.org/A000045
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= z +
∑
n≥0

fn+2z
n+2

= z + z2
∑
n≥0

fn+2z
n

= z + z2
∑
n≥0

fn+1z
n + z2

∑
n≥0

fnz
n

= z + z
∑
n≥0

fn+1z
n+1 + z2F (z)

= z + zF (z) + z2F (z),

therefore,

F (z) =
∑
n≥0

fnz
n =

z

1− z − z2
. (0.3)

It is well-known—[24]—that the n-th Fibonacci number counts:

1. The number of compositions of n− 1 where its parts are either one or two.

2. The number of compositions of n whose parts are odd numbers.

3. The number of compositions of n+ 1 where its parts are greater than one.

Let us see howwe can deduce these results using the generating function that we have derived.

1. This class can be described as Seq≥1(•, ••), so its generating function corresponds to

z + z2

1− (z + z2)
=

1

1− z − z2
− 1.

Therefore, for n ≥ 1, the number of compositions of n using only one and two as sum-
mands is counted by

[zn]

(
1

1− z − z2
− 1

)
= [zn]

(
F (z)

z
− 1

)
= fn+1.

2. The g.f. for odd numbers corresponds to
∑

n≥0 z
2n+1 = z

1−z2
. Therefore, the generating

function for this class is
z

1−z2

1− z
1−z2

=
z

1− z − z2
.

3. Similarly, the g.f. for numbers greater than one is
∑

n≥2 z
n = z2

1−z
. So, the generating

function for this class is
z2

1−z

1− z2

1−z

=
z2

1− z − z2
= zF (z),

hence, these compositions are counted by fn−1 for n ≥ 1.

Once again, the symbolicmethodhas provided uswith a quick approach to problems thatwould
be arduous if one attempted a bijection proof. Certainly, if two sequences have the same gener-
ating function, then they coincide; there is no other possibility. This is known as the Transfer
Principle in [13, §2.4].
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0.3. Asymptotic Estimations
The formula (0.3) can be decomposed into partial fractions in a convenient manner, so that the
denominators can be expanded as a geometric series, giving us

F (z) =
z

(1− φz)(1 + φ−1z)
=

1/
√
5

1− φz
− 1/

√
5

1 + φ−1z
,

where φ = 1+
√
5

2
is the golden ratio. Finally,

fn = [zn]F (z) = [zn]

(
1/
√
5

1− φz
− 1/

√
5

1 + φ−1z

)
=

1√
5

(
φn − (−φ)−n

)
. (0.4)

This is known as the Binet’s formula for Fibonacci numbers. In general, we can achieve for-
mulas like this for linear recurrences doing the same process, which is stated in the following
theorem.

Theorem 0.1. Let α1, α2, . . . , αd be a given sequence of complex numbers, d ≥ 1, and αd ̸= 0.
The following conditions on a sequence (an)n≥0 of complex numbers are equivalent:

i. ∑
n≥0

anz
n =

P (z)

Q(z)
,

where Q(z) = 1 + α1z + α2z
2 + · · · + αdz

d and P (z) ∈ C[z] is a polynomial of degree less
than d.

ii. For every n ≥ 0,

an+d + α1an+d−1 + α2an+d−2 + · · ·+ αdan = 0.

iii. For every n ≥ 0,

an =
k∑

i=1

Pi(n)γ
n
i ,

where 1+α1z+α2z
2+ · · ·+αdz

d =
∏k

i=1(1− γiz)
di , the γi’s are distinct and nonzero, and

Pi(n) ∈ C[n] is a polynomial of degree less than di.
Proof. See [26, §4.1,Th. 4.1.1].

Furthermore, note that the term (−φ)−n tends asymptotically to 0 as n → ∞ since |−φ−1| < 1.
Thus, the n-th term of the Fibonacci sequence has the asymptotic expression

fn ∼ φn

√
5
. (n → ∞)

From here, another famous result follows: the quotient of two consecutive Fibonacci numbers
tends asymptotically to the golden ratio, that is, fn+1/fn → φ as n → ∞.

For any sequence defined by a linear recurrence, the asymptotic formula will depend on the root
γi—fromTheorem 0.1—whose modulus is largest, leading us to the following theorem, which
also covers functions that are not necessarily rational.
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Theorem 0.2. Let A(z) be a meromorphic function in a disk |z| ≤ R with poles z1, z2, . . . , zk. If
f is analytic at |z| = R and z = 0, there exist polynomials Pj(n)—with j = 1, . . . , n—, such that

[zn]A(z) = an =
k∑

j=1

Pj(n)z
−n
j +O(R−n),

where the degree of each Pj(n) is one less than the multiplicity of zj . Furthermore,

Pj(n) ∼ Cj
nvj−1

(vj − 1)!
, (n → ∞)

where vj is the multiplicity of zj , and

Cj = lim
z→zj

(
1− z

zj

)vj

A(z).

Proof. See [8, §IV. 5,Th. IV.9 and IV.10].

0.4. Multivariate Generating Functions
Lastly, it may be of interest to compute a certain statistic or parameter χ related to some com-
binatorial class. In the case of compositions, this could be the number of summands. For this
purpose, one ormore variables can be added to the generating function to perform this counting.
In the case of two variables, a bivariate generating function can be expressed as

A(z, u) =
∑
x∈A

z|x|uχ(x) =
∑
n,k≥0

a(k)n znuk,

For multiple parameters and variables,

A(z, u1, . . . , um) =
∑
x∈A

z|x|u
χ1(x)
1 · · · uχm(x)

m .

For example, let us assume that we want to count the number of summands on the composi-
tions of a given integer n. We must introduce the variable u into formula (0.1) each time a new
summand is incorporated. Therefore, the bivariate generating function is

1

1− z
1−z

u
=

1− z

1− z − uz
. (0.5)

A generalized version of Theorem 0.1 tells us that if t(k)n is the number of compositions of n
employing exactly k summands, then the recurrence relation t(k)n = t

(k)
n−1+ t

(k−1)
n−1 holds for n, k ≥

1. This makes sense when we consider that if we subtract one unit from the last summand in
a given composition, it can either preserve the number of summands or reduce the number of
summands by one if that unit was the only one in the last summand.

We have already mentioned that indeed t
(k)
n =

(
n−1
k−1

)
for n ≥ k, so this recurrence also follows

when applying Pascal’s rule. However, there might be cases where the combinatorial interpre-
tation of a two-variable recurrence is not immediate. For the same reason, it can be interesting
to know the asymptotic behavior of the sequence, as well as information about the mean and
variance of these parameters. For this purpose,Theorem 0.3 is introduced.
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Theorem 0.3. LetA be a combinatorial class and χ : A → N be a parameter. LetA(z, u) be the
generating function of (A, χ). The expected value of χ for objects ofAn satisfies the formula

EAn(χ) =
[zn] ∂

∂u
A(z, u)

∣∣
u=1

[zn]A(z, 1)
,

and the second moment satisfies

EAn(χ
2) =

[zn] ∂2

∂u2A(z, u)
∣∣∣
u=1

[zn]A(z, 1)
+ EAn(χ),

hence, the variance is given by

VAn(χ) = EAn(χ
2)− EAn(χ)

2

=
[zn] ∂2

∂u2A(z, u)
∣∣∣
u=1

[zn]A(z, 1)
+

[zn] ∂
∂u
A(z, u)

∣∣
u=1

[zn]A(z, 1)

(
1−

[zn] ∂
∂u
A(z, u)

∣∣
u=1

[zn]A(z, 1)

)
.

Proof. See in [8, §III. 2, Pr. III.2].

Applying this theorem to the function (0.5), we obtain that the expected value for the number of
summands in a composition ofn is n+1

2
, and the variance is n−1

4
. Of course, we can also apply it to

those compositions we mentioned that are counted by the Fibonacci numbers. However, these
will require more algebraic manipulation. We will explain how to handle this in detail when we
address the number of summands in Arndt compositions in Chapter 2.

In addition, in Appendix A.1, an example is provided to calculate the mean and variance for a
given generating function.

In subsequent chapters, we will continue applying these concepts to further understand Arndt
compositions and delve deeper into the study of their properties.
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Chapter 1

Arndt Compositions

Let us explore another proof regarding the counting of Arndt compositions by Fibonacci num-
bers.

1.1. Definitions
Let us recall that Arndt compositions are those integer compositions that satisfy the condition
that each pair of summands is decreasing. Formally, they are defined as follows.

Definition1.1 (Arndt compositions). AnArndt composition is a composition (x1, . . . , xk) that
satisfies the condition x2i−1 > x2i for all i ≥ 1. If the length k of the composition is odd, this
condition is vacuously true for the last summand. □

From now on, we will denote by an the number of Arndt compositions that exist for a given
integern. Wewill not consider the empty composition in this definition, soa0 := 0. For example,
as we seen in the Introduction, a7 = 13.

We have already provided examples of Arndt compositions in Table I.1. Additionally, you can
refer to Appendix A.2, where we provide an example of how to compute Arndt compositions
for a given integer and their counting sequence based on those lists.

To prove that these compositions are counted by Fibonacci numbers, it will be crucial to repre-
sent them as bar graphs, as in Figure 1.1. This is straightforward; each part of the composition
will be represented as a column with a height equal to the size of that part. These bar graphs are
defined and deeply explored in [16], but we do not need to be overly explanatory in this regard,
the concept is quite intuitive.

Figure 1.1. Representation of the Arndt composition 6321745.

In Appendix A.3, it is explained how to compute Arndt compositions as bar graphs.

11
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On the other hand, it will be relevant to separate the class of Arndt compositions into those of
even and odd lengths.

Definition 1.2. Let A be the combinatorial class of Arndt compositions, and letAe,Ao ⊂ A
be the classes of those whose length is even and odd, respectively. □

1.2. Arndt Compositions with Two Summands
Since the restrictions on the summands in Arndt compositions occur only between pairs of con-
secutive ones, wewill see that it will be easy to enumerate them if we first focus on those of Arndt
that use exactly two summands.

Definition 1.3. LetM be the class of those compositions that use only two summands, and let
M(k) ⊂ M be those that also satisfy the property that the difference between the first summand
and the second is exactly k—this k could be negative. □

Lemma 1.4. For all k ∈ Z, the generating functionM (k)(z) associated toM(k) has expression

M (k)(z) =
z|k|+2

1− z2
.

Proof. For k ≥ 0, every composition inM(k) is the basic composition whose first part is
k + 1 and the second 1; or it is a composition inM(k) concatenated with two units, one in each
part—see Figure 1.2.

...k

M(k)

Figure 1.2. Decomposition of the elements inM(k).

ThenM (k)(z) satisfies the relationM (k)(z) = zk+2 + z2M (k)(z). Therefore

M (k)(z) =
zk+2

1− z2
.

By symmetry, for k < 0,M(k) ∼= M(−k), soM (k) = z−k+2

1−z2
for k < 0. We can summarize both

results in the expression given in the theorem.

LetM(≥k) :=
⋃

i≥k M(i).

Lemma 1.5. The generating functionM (≥1)(z) associated withM(≥1) has the expression

M (≥1)(z) =
z3

1− z − z2 + z3
.
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Proof. From the definition we have

M (≥1)(z) =
∑
k≥1

M (k)(z) =
∑
k≥1

zk+2

1− z2
=

z3

1− z − z2 + z3
.

The following result will be useful when we later count those compositions whose pairs of sum-
mands differ by k or more summands.

Lemma 1.6. The generating functionM (≥k)(z) has expression

M (≥k)(z) =


zk+2

1− z − z2 + z3
, if k ≥ 0

z2 + z3 − z−k+3

1− z − z2 + z3
, if k < 0.

(1.1)

Proof. For k ≥ 0,

M (≥k)(z) =
∑
j≥k

M (j)(z) =
∑
j≥k

zj+2

1− z2
=

zk+2

1− z − z2 + z3
.

For k < 0,

M (≥k)(z) =
∑
j≥k

M (j)(z)

=
∑
j≥0

M (j)(z) +
−1∑
j=k

M (−j)(z)

=
z2

1− z − z2 + z3
+

−k∑
j=1

zj+2

1− z2

=
z2

1− z − z2 + z3
+

z3 − z−k+3

1− z − z2 + z3

=
z2 + z3 − z−k+3

1− z − z2 + z3
.

Another way to prove the first part of Lemma 1.6 is to observe that every composition in M
whose parts differ by k units or more can be decomposed as a summand in the first part of
height greater than or equal to k, concatenated with pairs of units; one unit for each part of
the composition—see Figure 1.3. Symbolically this translates into the classes

M(≥k) ∼= Seq≥1(Z) Seq≥k(Z2).

Therefore,

M (≥k)(z) =
zk

1− z

z2

1− z2
=

zk+2

1− z − z2 + z3
.

This construction will make sense in Section 2.1.
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k

...

...

Figure 1.3. Alternative proof of the Lemma 1.6 for k ≥ 0.

1.3. Counting Arndt Compositions with Fibonacci Numbers
Now, we present the main result.

Theorem 1.7. The generating functionA(z) associated withA has the expression

A(z) =
∑
n≥0

anz
n =

z

1− z − z2
.

Proof. This is derived from the following observations:

1. It is clear thatA = Ae +Ao, so

A(z) = Ae(z) + Ao(z). (1.2)

2. Given that the restrictions of Arndt compositions only occur between consecutive pairs
of summands, we can express every composition in Ae as an arbitrary concatenation of
compositions inM(≥1), that is,

Ae = Seq≥1

(
M(≥1)(Z)

)
.

Thus,

Ae(z) =
M (≥1)(z)

1−M (≥1)(z)
. (1.3)

3. Asnoted in thedefinition, the restrictionx2i−1 > x2i vacuously holds for the last summand
if the length of the composition is odd. Then every odd composition of length greater than
one is an even composition concatenatedwith an arbitrary part at the end—see Figure 1.4.

Ae

...

Figure 1.4. Compositions of odd length.
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Symbolically,
Ao = Seq≥1(Z) +Ae Seq≥1(Z).

Therefore,

Ao(z) = (1 + Ae(z))
z

1− z
. (1.4)

By substituting the found expression forM(z) and solving the system given by equations (1.2),
(1.3), and (1.4), we get

A(z) =
∑
n≥0

anz
n =

z

1− z − z2
, (1.5)

Ae(z) =
z3

1− z − z2
,

Ao(z) =
z − z3

1− z − z2
.

Corollary 1.8. For n ≥ 0, there exist fn Arndt compositions. Moreover, if n ≥ 2, fn−1 of them
have odd length and fn−2 have even length.

Proof. Since an and fn have the same generating function, an = fn for all n ≥ 0. On the
other hand,

Ae(z) = z2A(z) and Ao(z) = z + zA(z),

so for n ≥ 2 the number of Arndt compositions of even length coincides with fn−2, and the
number of those of odd length coincides with fn−1.

There is an even simpler proof of this result. Note that if we take a composition in Ao that
is different from unity and subtract one unit from its last summand, we either obtain another
element inAo or one inAe—see Figure 1.4. Now, if we take any composition inAe and subtract
two units, one from the last summand and another from the second to the last, we get another
element inAe or one inAo—see Figure 1.5.

...

...Ao

Figure 1.5. Compositions of even length.

This translates into the equalities

Ao(z) = z + z(Ao(z) + Ae(z)) = z + zA(z),

Ae(z) = z2(Ao(z) + Ae(z)) = z2A(z).
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From this,A(z) = Ae(z) +Ao(z) = z + zA(z) + z2A(z). Solving forA(z) also yields expression
(1.5).

One might consider this chapter redundant in view of this concise proof. Do not be mistaken;
first, themain proof was the first to take place in the development of this document, and second,
it allows us to understand in a deeper way the structure of this class, laying the foundation for
the corresponding generalizations in Chapter 3.



Chapter 2

Statistics on Arndt Compositions

Wewill derive formulas for some of the statistics onA, mainly usingTheorems 0.2 and 0.3. The
basic statistics on compositions typically include the length and the size of the first and last sum-
mands, as well as counts related to the associated bar graph. Although we employ similar meth-
ods, each will have its own complexity. Most of these results are novel, and some of them were
published in [5] with Professor Ramírez during the development of this thesis.

The intention is not to encompass all possible statistics, as they can be as creative as one proposes.
One problem that captivated my attention was the work carried out by Mansour and Shattuck
in [18], in which they calculated the area that would be filled with water in a bar graph when
water drops on it; outstanding. It could not be ruled out to perform this onArndt compositions,
but that would need to be addressed in another project.

It is possible that in some passages of the text, the symbolic method may become dispensable.
Therefore, as we progress, wemay omit this step and immediately proceed to find the generating
functions for the sequences in question.

2.1. Length (Number of Summands)
To count the composition length, we will use a bivariate generating function in which one vari-
able keeps track of the number of summands. It is sufficient to make some simple modifications
toTheorem 1.7.

Definition2.1. LetB(k) ⊂ Abe the combinatorial class ofArndt compositions of lengthk. For
the sake of notation, we define B =

⋃
k≥1 B(k), and b

(k)
n as the number of Arndt compositions of

n with length k. □

Theorem 2.2 (Bivariate generating function). The bivariate generating function for the class B
is

B(z, u) =
∑
k≥1

B(k)(z)uk =
uz − uz3 + u2z3

1− z − z2 + z3 − u2z3
.

Proof. We just have to multiply the expressions of the functional system of Theorem 1.7
by u each time a new summand appears.

B(z, u) = Be(z, u) + Bo(z, u),

Be(z, u) =
M (≥1)(z)u2

1−M (≥1)(z)u2
,

17
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Bo(z, u) = (Be(z, u) + 1)
uz

1− z
.

Solving the system we obtain the expressions

B(z, u) =
uz − uz3 + u2z3

1− z − z2 + z3 − u2z3
,

Be(z, u) =
u2z3

1− z − z2 + z3 − u2z3
,

Bo(z, u) =
uz − uz3

1− z − z2 + z3 − u2z3
.

Corollary 2.3 (First recurrence). For n, k ≥ 0, b(k)n satisfies the recurrence

b(k)n =


0, if k ≥ n and nk ̸= 1, or if k = 0,
1, if k = 1 and n ≥ 1, or if n = 3 and k = 2,
b
(k)
n−1 + b

(k)
n−2 − b

(k)
n−3 + b

(k−2)
n−3 , if n ≥ 4 and k ≥ 2.

Proof. The initial conditions are immediate, and throughout the document, we will focus
solely on the recurrences. The linear recurrence follows from equation

B(z, u) = uz − uz3 + u2z3 + (z + z2 − z3 + u2z3)B(z, u),

this is a general form ofTheorem 0.1.

Verify this result yourself in Table B.1. The combinatorial interpretation of this recurrence is
unknown.

Example 2.4. The first terms ofB(z, u) are

B(z, u) = uz + uz2 +
(
u+ u2

)
z3 +

(
u+ u2 + u3

)
z4 +

(
u+ 2u2 + 2u3

)
z5

+
(
u+ 2u2 + 4u3 + u4

)
z6 +

(
u+ 3u2 + 6u3 + 2u4 + u5

)
z7

+
(
u+ 3u2 + 9u3 + 5u4 + 3u5

)
z8 +

(
u+ 4u2 + 12u3 + 8u4 + 8u5 + u6

)
z9

+
(
u+ 4u2 + 16u3 + 14u4 + 16u5 + 3u6 + u7

)
z10 +O(z11).

The term 9u3z8 indicates that b(3)8 = 9, i.e. there are nine Arndt compositions of 8 that employ
exactly three summands. They are shown in Figure 2.1. ◁

Even without yet knowing a formula for b(k)n , it is possible to gather information about its distri-
bution.

Theorem 2.5 (Mean and variance). For n ≥ 3, the expected value of the length of Arndt compo-
sitions of size n is

3

5
(2n− 5)

fn+1

fn
− 1

5
(8n− 27) ∼

(
3√
5
− 1

)
n. (n → ∞)

On the other hand, the variance is

−
(
3

5
(2n− 5)

fn+1

fn

)2

+
1

25
(36n2 − 92n− 565)

fn+1

fn

+
2

25

(
18n2 − 308n+ 749

)
∼ 4

25

(
−75 + 34

√
5
)
n. (n → ∞)
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Figure 2.1. Compositions inA8 that employ 3 summands.

Proof. First, we will need the identities—[14, §20.4, Eqs. 20.19 & 20.20]—

[zn]F (z)2 =
2nfn+1 − (n+ 1)fn

5
, (2.1)

[zn]F (z)3 =
−6nfn+1 + (n+ 1)(5n+ 2)fn

50
. (2.2)

FromTheorem 0.3 the mean of the length is

[zn] ∂
∂u
B(z, u)

∣∣
u=1

[zn]B(z, 1)
.

The denominator is just fn, and by equation (2.1) the numerator is

[zn]
∂

∂u
B(z, u)

∣∣∣∣
u=1

= [zn]

(
2z4

(1− z − z2)2
+

z + z3

1− z − z2

)
= [zn]

(
2z2F (z)2 + F (z) + z2F (z)

)
= fn + fn−2 + 2[zn]z2F (z)2

= fn + fn−2 +
2

5
(2(n− 2)fn−1 − (n− 1)fn−2)

= fn +
4

5
(n− 2)fn−1 +

−2n+ 7

5
fn−2.

From the Fibonacci recurrence formula we obtain

[zn]
∂

∂u
B(z, u)

∣∣∣∣
u=1

=
3

5
(2n− 5)fn+1 −

1

5
(8n− 27)fn.

Dividing by fn we get the formula for the mean. From the fact that fn+1

fn
∼ 1+

√
5

2
as n → ∞, we

also get the asymptotic formula.

In general, we can express any Fibonacci number in terms of fn+1 and fn using the relations

fn+m = fm−1fn + fmfn+1, (2.3)
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or fn−m = (−1)m (fm+1fn − fmfn+1) , (2.4)

for all n ≥ m ≥ 0, which can be derived fromBinet’s formula (0.4). Keep them inmind; we will
use them whenever we want to find the mean and variance of any statistic in the document.

For the variance, we have to compute

[zn]
∂2

∂u2
B(z, u)

∣∣∣∣
u=1

= [zn]

(
2z3

1− z − z2
+

6z4 + 4z6

(1− z − z2)2
+

8z7

(1− z − z2)3

)
= [zn]

(
2z2F (z) + 2z2(3 + 2z2)F (z)2 + 8z4F (z)3

)
= − 2

25

(
30n2 − 313n+ 650

)
fn+1 +

4

25

(
25n2 − 252n+ 523

)
fn.

Plugging this expression into the variance formula, we obtain the given expressions.

The asymptotic formulas for themean and variance allow us to easily estimate the Coefficient of
Variation (CV ), which is defined as the ratio of the standard deviation to the mean. This coeffi-
cient is a dimensionless percentage and helps estimate how the statistic in question is distributed
around the mean. ACV close to zero indicates that the distribution is concentrated around the
mean, and very close to one indicates high dispersion—see [8, §III. 2, Pr. III.3]. In our case, the
number of parts is asymptotically close to the mean, since

CV ∼

√(
3√
5
− 1
)
n

4
25

(
−75 + 34

√
5
)
n
∼ 0. (n → ∞)

Let us continue examining the recurrence properties of b(k)n . It is possible to determine a recur-
rence formula for b(k)n that depends only on the variable n. First, it will be necessary to find a
closed formula forB(k)(z).

Lemma 2.6. For all k ≥ 1,

B(2k+1)(z) =
z

1− z
B(2k)(z),

B(2k) =
z2

1− z2
B(2k−1)(z),

with initial conditionB(1)(z) = z/(1− z). Also,

B(2k+1)(z) = [B(2)(z)]kB(1)(z),

B(2k)(z) = [B(2)(z)]k.

Proof. Note thatB(1) ∼= Seq≥1(Z), soB(1)(z) = z/(1− z). As shown inTheorem 1.7, any
odd composition inA of length greater than one can be decomposed as an even composition in
A concatenated with an arbitrary summand. Symbolically, B(2k+1) ∼= Seq≥1(Z)B(2k), hence

B(2k+1)(z) =
z

1− z
B(2k)(z).

Secondly, any even composition inA can be decomposed as an odd composition inA concate-
nated with pairs of units, in each pair one unit remains in the penultimate part, and the other in
the last one—see Figure 1.5.
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Therefore B(2k) ∼= Seq≥1(Z2)B(2k−1), that is,

B(2k)(z) =
z2

1− z2
B(2k−1)(z).

You can verify thatB(2)(z) = z3/((1− z)(1− z2)). Substituting the second recurrence into the
first and iterating, we obtain

B(2k+1)(z) =
z

1− z
· z2

1− z2
B(2k−1)(z)

= B(2)(z)B(2k−1)(z)

=
[
B(2)(z)

]2
B(2k−3)(z)

= · · ·

=
[
B(2)(z)

]j
B(2k−2j+1)(z).

Taking j = k in the last expression,

B(2k+1)(z) = [B(2)(z)]kB(1)(z).

Similarly,

B(2k)(z) =
z2

1− z2
B(2k−1)(z)

=
z2

1− z2
[
B(2)(z)

]k−1
B(1)(z)

=
[
B(2)(z)

]k−1
B(2)(z)

=
[
B(2)(z)

]k
.

Theorem 2.7 (Generating function). For k ≥ 1, the g.f. B(k)(z) has the expression

B(k)(z) =
zk

(1− z)k
· z⌊k/2⌋

(1 + z)⌊k/2⌋
=

z⌊3k/2⌋

(1− z)k(1 + z)⌊k/2⌋
. (2.5)

Proof. Theproof for the formula ofB(k)(z)will be done by induction on k. The case k = 1
is true. If we assume that the formula is true for some k, we have two cases to consider:

⋄ If k = 2ℓ for some ℓ > 0,

B(k+1)(z) = B(2ℓ+1)(z)

=
z

1− z
B(2ℓ)(z)

=
z⌊3k/2⌋+1

(1− z)k+1(1 + z)ℓ

=
z⌊

3(k+1)
2 ⌋

(1− z)k+1(1 + z)⌊
k+1
2 ⌋ .
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⋄ Similarly, if k = 2ℓ+ 1,

B(k+1)(z) = B(2ℓ+2)(z)

=
z2

1− z2
B(2ℓ+1)(z)

=
z⌊3k/2⌋+2

(1− z)k+1(1 + z)⌊k/2⌋+1

=
z⌊

3(k+1)
2 ⌋

(1− z)k+1(1 + z)⌊
k+1
2 ⌋ .

Example 2.8. Note that by Lemma 2.6∑
k≥0

B(2k+1)(z) = B(1)(z) + B(2)(z)
∑
k≥0

B(2k+1)(z).

Therefore, ∑
k≥0

B(2k+1)(z) =
B(1)(z)

1− B(2)(z)
=

z
1−z

1− z
1−z

z2

1−z2

=
z − z3

1− z − z2
= Ao(z),

whereAo(z) is the generating function fromTheorem 1.7, as expected. Similarly,
∑

k≥1 B
(2k)(z)

= Ae(z).What has been done in this section is independent of what is proven in the said theo-
rem, so this result could be considered as an alternative proof. ◁

Corollary 2.9 (Second recurrence). For n, k ≥ 0 the following linear recurrence relation holds

b(k)n =


0, if n < ⌊3k/2⌋, or if n = 0,
1, if n = ⌊3k/2⌋ and n ̸= 0,
⌊3k/2⌋∑
i=1

i∑
j=0

(
k

j

)(
⌊k/2⌋
i− j

)
(−1)j+1b

(k)
n−i, if n > ⌊3k/2⌋.

Proof. By the Cauchy product of series, the denominator ofB(k)(z) is

(1− z)k(1 + z)⌊k/2⌋ =

[
k∑

i=0

(
k

i

)
(−1)izi

]⌊k/2⌋∑
i=0

(
⌊k/2⌋

i

)
zi


=

k+⌊k/2⌋∑
i=0

i∑
j=0

(
k

j

)(
⌊k/2⌋
i− j

)
(−1)jzi

=

⌊3k/2⌋∑
i=0

i∑
j=0

(
k

j

)(
⌊k/2⌋
i− j

)
(−1)jzi.

ByTheorem 0.1, b(k)n satisfies the recurrence relation
⌊3k/2⌋∑
i=0

i∑
j=0

(
k

j

)(
⌊k/2⌋
i− j

)
(−1)jb

(k)
n−i = 0,

and solving for the term b
(k)
n yields the desired equality.
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Now we find a closed formula for b(k)n .

Theorem 2.10 (Closed formula). For n, k ≥ 1, b(k)n is

b(k)n =
n−k∑

i=⌊k/2⌋

(
n− i− 1

k − 1

)(
i− 1

⌊k/2⌋ − 1

)
(−1)i+⌊k/2⌋. (2.6)

Proof. We can use the well-known identity—cf. [29, §1.5, Eq. 1.5.5]—

1

(1− z)k
=
∑
n≥0

(
n+ k − 1

k − 1

)
zn

for nonnegative k. Therefore,

B(k)(z) = zk+⌊k/2⌋ 1

(1− z)k
· 1

(1 + z)⌊k/2⌋

= zk+⌊k/2⌋

(∑
n≥0

(
n+ k − 1

k − 1

)
zn

)(∑
n≥0

(
n+ ⌊k/2⌋ − 1

⌊k/2⌋ − 1

)
(−1)nzn

)

= zk+⌊k/2⌋
∑
n≥0

n∑
i=0

(
n− i+ k − 1

k − 1

)(
i+ ⌊k/2⌋ − 1

⌊k/2⌋ − 1

)
(−1)izn

=
∑
n≥0

n−k−⌊k/2⌋∑
i=0

(
n− i− ⌊k/2⌋ − 1

k − 1

)(
i+ ⌊k/2⌋ − 1

⌊k/2⌋ − 1

)
(−1)izn

=
∑
n≥0

n−k∑
i=⌊k/2⌋

(
n− i− 1

k − 1

)(
i− 1

⌊k/2⌋ − 1

)
(−1)i+⌊k/2⌋zn.

The term
(

i−1
⌊k/2⌋−1

)
(−1)i+⌊k/2⌋ can also be expressed in terms of the generalized binomial coeffi-

cient
(−⌊k/2⌋

−i

)
. However, for practical purposes, we will leave the expression in terms of positive

entries.

Adding b(k)n over k ≥ 1 we get an identity—probably new—for the Fibonacci numbers.

Corollary 2.11 (Wow!). For n ≥ 1, the n-th Fibonacci number fn is

fn =

⌊ 2n+1
3 ⌋∑

k=1

n−k∑
i=⌊k/2⌋

(
n− i− 1

k − 1

)(
i− 1

⌊k/2⌋ − 1

)
(−1)i+⌊k/2⌋.

We could have just added over k ≥ 1 in the double sum, but the values are null after k =
⌊
2n+1

3

⌋
since that is the maximum number of parts one can use to form an Arndt composition1.

Alternatively, the expression for b(k)n may appear unwieldy, but its asymptotic formula is sim-
pler.
1Themaximum number of parts is reached when we use the composition n = 2 + 1 + 2 + 1 + · · · . If n = 3ℓ for
ℓ ≥ 1 such number is 2ℓ. In other cases, the maximum is 2ℓ+ 1. We can simplify this maximum as

⌊
2n+1

3

⌋
.
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Theorem 2.12 (Asymptotic formula). For every k ≥ 1,

b(k)n ∼ nk−1

2⌊k/2⌋(k − 1)!
. (n → ∞)

Proof. The dominant root of the denominator in (2.5) is z1 = 1, and its multiplicity is k.
Plugging this into the formulas ofTheorem 0.2 yields the desired result.

Now, the reader might wonder: is there not a more elegant way to express b(k)n ? We will address
this issue as well. To do so, we will employ the algorithms of Zeilberger and Petkovšek†, which
are explained in the book [22] and implemented in Appendix A.4. They are highly useful, since
the first, under certain conditions, allows us to find a recursion not necessarily linear for a sum
like b(k)n , and from there, Petkovšek’s algorithm enables us to decide whether or not this sequence
has a hypergeometric form, which basically means it can be expressed as a product of factorials
or exponential terms.

So, first, we implement Zeilberger’s algorithm with the expression found for b(k)n to prove the
following corollary.

Corollary 2.13 (Third recurrence). For n, k ≥ 0, it is satisfied the nonlinear recurrence

b(k)n =


0, if n = 0, or if n = 1 and k ̸= 1,
1, if n = ⌊3k/2⌋ and n ≥ 1,

1

n− ⌊3k/2⌋

(
(n− 2)b

(k)
n−2 +

⌊
k+1
2

⌋
b
(k)
n−1

)
, if n ̸= ⌊3k/2⌋ and n ≥ 2.

Proof. Let F (n, k|i) be the i-th term in the sum of (2.6),

F (n, k|i) =
(
n− i− 1

k − 1

)(
i− 1

⌊k/2⌋ − 1

)
(−1)i+⌊k/2⌋,

andG(n, k|i) defined as

G(n, k|i) = (n− i)(⌊k/2⌋ − i)(k − 1)

(n− k − i+ 1)(n− k − i+ 2)
F (n, k|i).

Then

−nF (n, k|i) + (⌊k/2⌋ − k)F (n+ 1, k|i) + (n− k − ⌊k/2⌋+ 2)F (n+ 2, k|i)
= G(n, k|i+ 1)−G(n, k|i).

Summing over all i, the right-hand part cancels out, and we obtain

−nb(k)n + (⌊k/2⌋ − k) b
(k)
n+1 + (n− k − ⌊k/2⌋+ 2) b

(k)
n+2 = 0,

which is equivalent to

(n− 2)b
(k)
n−2 +

⌊
k+1
2

⌋
b
(k)
n−1 + (⌊3k/2⌋ − n)b(k)n = 0.

†Marko Petkovšek passed away in March of this year; we extend our condolences to his family, and I am grateful
for having had access to the free version of his algorithm.
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Subsequently, Petkovšek’s algorithm can be employed to demonstrate that, indeed, there is no
hypergeometric form for b(k)n . In otherwords, the expression (2.6) is the best that can be obtained
for b(k)n . In any case, asking ourselves this question was not in vain, as it led us to Corollary 2.13,
leaving us with the third recurrence to calculate this sequence.

Finally, to conclude this section we mention that during this research, it was discovered that the
sequence b(k)n matches with the described in OEIS A354787. This sequence counts the number
of reduced anti-palindromic compositions of n with length k, explored in [2]. They are defined
below.

Definition 2.14 (Anti-palindromic compositions). A composition (x1, . . . , xk) is called anti-
palindromic if satisfies xi ̸= xk−i+1 for all i ̸= k+1

2
.

This definition may result in equivalent compositions by flipping any pair xi and xk−i+1. There-
fore, to avoid double counting, it is defined a reduced anti-palindromic composition as the one
that satisfies xi > xk−i+1 for all i < k+1

2
. □

For example, all of these are equivalent anti-palindromic compositions

(3, 8, 6, 5, 2), (2, 8, 6, 5, 3), (3, 5, 6, 8, 2), (2, 5, 6, 8, 3),

but the representative would be (3, 8, 6, 5, 2), the only reduced anti-palindromic composition.

Once we define the reduced version of this object, the connection between Arndt compositions
and reduced anti-palindromic compositions is immediate, as in both cases, we are comparing
pairs of summands, the first greater than the other. In the case ofArndt compositions, the pairs of
summands are ordered consecutively, and in the case of reduced anti-palindromic compositions,
they are ordered at each side of the composition.

For example, the representation of (3, 8, 6, 5, 2) as an Arndt composition would be (3, 2, 8, 5, 6).
To go from one to the other is straightforward; we take each pair of summands at the sides and
reorder them to be adjacent in an Arndt composition. When the length of the reduced anti-
palindromic composition is odd, the summand in themiddle—the one that does not need to be
compared to another—becomes the last in the Arndt composition.

The bijection between both sets is simple, but if formality is desired, we proceed as follows.

Theorem 2.15. The number of Arndt compositions of n with k summands equals the number of
reduced anti-palindromic compositions of n with k summands.

Proof. Consider π defined as

π(i) =

{
i+1
2
, if i ≡ 1 (mod 2) and 1 ≤ i ≤ k,

k − i
2
+ 1, if i ≡ 0 (mod 2) and 1 ≤ i ≤ k.

π is a permutation on {1, . . . , k}. To see this, note that in the first case of π, the elements are
mapped to positive numbers less than or equal to ⌈k/2⌉. In the extreme case i = 1, π(1) = 1.
When k is odd, π(k) = k+1

2
≤ ⌈k/2⌉, and when k is even, π(k − 1) = k

2
≤ ⌈k/2⌉. This portion

of the function is increasing, so elements are not repeated. Similarly, in the second case of π, all
elements are mapped to numbers greater than ⌈k/2⌉ and less than or equal to k. For this reason,
π(i) = π(j) implies i = j, because both cases of π are exclusive. Thus, π is one-to-one.

https://oeis.org/A354787
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To prove that π is onto, it suffices to verify that has a right inverse µ = π−1 given by

µ(i) =

{
2i− 1, if 1 ≤ i ≤ ⌈k/2⌉,
2(k − i+ 1), if ⌈k/2⌉ < i ≤ k.

So, given a reduced anti-palindromic composition (y1, y2, . . . , yk), we obtain its corresponding
Arndt composition by taking (yπ(1), yπ(2), . . . , yπ(k)); and vice versa, given anArndt composition
(x1, x2, . . . , xk), we obtain its reduced anti-palindromic composition through (xµ(1), xµ(2), . . . ,
xµ(k)). To check this, note that the condition yi > yk−i+1 becomes yπ(2i−1) > yπ(2i); and that
x2i−1 > x2i becomes xµ(i) > xµ(k−i+1).

This result is very important, as, with the exception of what is detailed in Section 2.5, the discov-
ered statistics also apply to reduced anti-palindromic compositions.

2.2. Size of the Last Summand
To count those Arndt compositions according to the size of the last summand, we introduce a
new class.

Definition 2.16. Let C(k) ⊂ A be the combinatorial class of Arndt compositions whose last
summand is k, and c

(k)
n its counting sequence. Again, we split it into those of even and odd

length with the classes C(k)
e and C(k)

o , respectively. □

Fortunately, this time c(k)n has a simpler formula.

Theorem 2.17 (Generating function). For k ≥ 1, the generating function associated with C(k) is

C(k)(z) = zk + z2k+1 + (zk+2 + z2k+1)F (z),

where F (z) = z/(1− z − z2). Therefore,

c(k)n =



1, if n = k and k > 0,
fn−k−2, if k + 2 ≤ n ≤ 2k and k > 0,
fk−1 + 1, if n = 2k + 1 and k > 0,
fn−k−2 + fn−2k−1, if n > 2k + 1 and k > 0,
0, otherwise.

Proof. Every composition in C(k) can be decomposed according to the parity of its length
as follows:

1. If the length of the composition is even, it can be decomposed as the concatenation of any
even composition of length greater than two, a part of size at least k+1, and a part of size
k. Symbolically,

C(k)
e

∼= Ae Seq≥k+1(Z)Zk + Seq≥k+1(Z)Zk.

Therefore,

C(k)
e (z) = (Ae(z) + 1)

zk+1

1− z
zk
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= z2kAo(z)

= z2k+1 (1 + F (z)) .

2. If the composition length is odd and greater than 1—, it can be decomposed as a concate-
nation of any even composition and a part of size k. Symbolically,

C(k)
o

∼= AeZk + Zk.

Then,

C(k)
o (z) = zk (1 + Ae(z))

= zk
(
1 + z2F (z)

)
.

Since C(k)
e (z) + C

(k)
o (z),

C(k)(z) = zk + z2k+1 +
(
zk+2 + z2k+1

)
F (z)

= zk + z2k+1 +
∑

n≥k+2

fn−k−2z
n +

∑
n≥2k+1

(fn−k−2 + fn−2k−1) z
n.

By grouping the summands we obtain the given formula for k > 1,

C(k)(z) = zk + (fk−1 + 1) z2k+1 +
2k∑

n=k+2

fn−k−2z
n +

∑
n≥2k+1

(fn−k−2 + fn−2k−1) z
n.

The case k = 1 is similar.

Note that after n ≥ 2k + 3, c(k)n = c
(k)
n−1 + c

(k)
n−2—see Table B.4.

Example 2.18. For n ≥ 6, there are fn−4 + fn−5 = fn−3 Arndt compositions whose last sum-
mand is 2. ◁

Example 2.19. The first terms of C(3)(z) are

C(3)(z) = z3 + z6 + 2z7 + 3z8 + 4z9 + 7z10 +O
(
z11
)
.

The term 7z10 shows that c(3)10 = 7, i.e. out of the 55 Arndt compositions of 10, seven of them
have last part 3—see Figure 2.2. ◁

Corollary 2.20 (Restricted size of last part). The number of Arndt compositions whose last sum-
mand is at most k is

c(≤k)
n =



fn, if 0 ≤ n < k and k > 0,
fn − fn−k, if k ≤ n < k + 2 and k > 0,
fn − fn−k−1, if k + 2 ≤ n < 2k + 2 and k > 0,
fn − fn−k−1 − fn−2k−2, if 2k + 2 ≤ n and k > 0,
0, otherwise.

The number of those whose last summand is at least k is

c(≥k)
n =


fn−k+1, if k − 1 ≤ n < k + 1 and k > 0,
fn−k, if k + 1 ≤ n < 2k and k > 0,
fn−k + fn−2k, if 2k ≤ n and k > 0,
0, otherwise.
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Figure 2.2. Compositions inA10 with last part 3.

Proof. For k ≥ 1, the generating function for C(≤k)(z) is

C(≤k)(z) =
k∑

j=1

C(j)(z) =
(
1− zk + zk+2 − z2k+2

)
F (z).

Once again, expanding the sums and grouping all the summands yield the cases for the formula.
Similarly, for C(≥k)(z),

C(≥k)(z) =
∑
j≥k

C(j)(z) =
(
zk−1 − zk+1 + z2k

)
F (z).

The sequences above are listed in Tables B.5 and B.6.

Example 2.21. By Theorem 2.17, for n ≥ 4 there are 2fn−3 Arndt compositions whose last
summand is 1, and byCorollary 2.20 there exist fn−2+fn−4 Arndt compositions whose last part
is greater than 1. This was pointed out in Corollary 2.2 of [11, §2]. ◁

Theorem 2.22 (Bivariate generating function). The bivariate generating function for C is

C(z, u) =
∑
k≥1

C(k)(z)uk

=
u(1− z)z(1 + z)(1− z + z2 − uz2)

(1− z − z2) (1− uz) (1− uz2)

=
uz − uz2 − u2z3 + uz4 − uz5 + u2z5

1− z − uz − z2 + 2uz3 + u2z3 + uz4 − u2z4 − u2z5
.

Therefore, forn ≥ 6 and k ≥ 3, c(k)n = c
(k)
n−1+c

(k−1)
n−1 +c

(k)
n−2−2c

(k−1)
n−3 −c

(k−2)
n−3 −c

(k−1)
n−4 +c

(k−2)
n−4 +c

(k−2)
n−5 .

From here, we can study the distribution of this parameter.

Theorem 2.23 (Mean and variance). For n > 0, the expected value of the last part of an Arndt
composition of size n is

2
fn+1

fn
− 1 + (−1)n

2fn
− 1 ∼

√
5. (n → ∞)
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The variance is

−
(
2
fn+1

fn

)2

+ 2 (1 + (−1)n)
fn+1

f 2
n

+ 6
fn+1

fn
−
(
1 + (−1)n

2fn

)2

− n+ 11 + (n− 1)(−1)n

2fn
+ 4 ∼ 1 +

√
5. (n → ∞)

Proof. For n ≥ 1 we have

[zn]
∂

∂u
C(z, u)

∣∣∣∣
u=1

= [zn]

(
2− z

1− z − z2
− 1/2

1− z
− 1/2

1 + z
− 1

)
= 2fn+1 − fn −

1

2
(1 + (−1)n).

Also,

[zn]
∂2

∂u2
C(z, u)

∣∣∣∣
u=1

= [zn]

(
6z

1− z − z2
− 1/2

(1− z)2
− 1/2

(1 + z)2
− 7/2

1− z
+

5/2

1 + z
+ 2

)
= 6fn −

1

2
(n+ 1)(1 + (−1)n)− 7

2
+

5

2
(−1)n

= 6fn −
1

2
(n+ 8 + (−1)n(n− 4)) .

Theorem 0.3 yields the result.

It is worth noting that the term 2fn+1 − fn − 1
2
(1 + (−1)n) coincides with the sequence OEIS

A014217, i.e. the sum of the last parts of all Arndt compositions of size n is

n∑
k=1

kc(k)n =

⌊(
1 +

√
5

2

)n⌋
,

thus providing a newcombinatorial interpretationof it. This time theCV ∼
√

1+
√
5√

5
≈ 0.804 496

as n → ∞, i.e. the sizes of the last parts tends to be dispersed.

Finally, we also have an asymptotic formula for c(k)n .

Theorem 2.24 (Asymptotic formula). For k ≥ 1,

c(k)n ∼ φk−1 + 1

φ2 + 1
φn−2k, (n → ∞)

where φ = 1+
√
5

2
is the golden ratio.

Proof. C(k)(z) has two poles, at z1 = φ−1 and z2 = −φ, each of multiplicity one. Accord-
ing to Theorem 0.2, when n → ∞, c(k)n is asymptotically (φ−1)−n = φn times a constant, given
by

lim
z→z1

(
1− z

z1

)
C(k)(z) =

φk−1 + 1

φ2 + 1
φ−2k.

https://oeis.org/A014217
https://oeis.org/A014217
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2.3. Size of the First Summand
Analogously, to count the size of the first part, we introduce the sequence d(k)n as the number of
Arndt compositions of size n whose first part is k, andD(k) as its combinatorial class.

Theorem 2.25 (Generating function). For k ≥ 1, the generating functionD(k)(z) is

D(k)(z) =
(
zk−1 − z2k−1 − z2k

)
F (z).

Therefore,

d(k)n =


fn−k+1, if k − 1 ≤ n < 2k − 1 and k > 0,
fk, if n = 2k − 1 and k > 0,
fn−k+1 − fn−2k+1 − fn−2k, if 2k ≤ n and k > 0,
0, otherwise.

Proof. If k > 1, every composition inD(k)
e of length greater than two can be decomposed

into a pair of summands whose first part is k, its second part is less than k, along with any com-
position in Ae. Every composition in D(k)

o of length greater than one can be decomposed into
the same pair of summands, along with any composition inAo. Therefore,

D(k)
e (z) = zk

z − zk

1− z
(1 + Ae(z)) , D(k)

o (z) = zk + zk
z − zk

1− z
Ao(z).

Hence,

D(k)(z) = D(k)
e (z) +D(k)

o (z) =
(
zk−1 − z2k−1 − z2k

)
F (z).

From here onwards, the calculations are quite similar to those in Section 2.2, so details are om-
mited.

Recurrence relation. From n ≥ 2k + 2, d(k)n = d
(k)
n−1 + d

(k)
n−2—see Tables B.7, B.8 and B.9.

Restricted size of first part. For k ≥ 1,

D(≤k)(z) =
z − z2 − zk+1 + z2k+2

1− 2z + z3
and D(≥k)(z) =

zk − z2k

1− 2z + z3
.

Hence, the number of Arndt compositions whose first summand is at most k is

d(≤k)
n =



1, if n = 1 and k > 0,
fn, if 2 ≤ n < k + 1 and k ≥ 2,
fn − fn−k+2 + 1, if k + 1 ≤ n < 2k + 2 and k > 0,
fn − fn−k+2 + fn−2k+1, if 2k + 2 ≤ n and k > 0,
0, otherwise.

The number of those whose first summand is at least k is

d(≥k)
n =


fn−k+3 − 1, if k ≤ n < 2k and k > 0,
fn−k+3 − fn−2k+3, if 2k ≤ n and k > 0,
0, otherwise.
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Bivariate generating function. The bivariate generating function forD is

D(z, u) =
∑
k≥1

D(k)(z)uk

=
uz(1− z − z2 + uz3)

(1− z − z2)(1− uz)(1− uz2)

=
uz − uz2 − uz3 + u2z4

1− z − uz − z2 + 2uz3 + u2z3 + uz4 − u2z4 − u2z5
.

Therefore, for n ≥ 5 and k ≥ 3, d(k)n = d
(k)
n−1+ d

(k−1)
n−1 + d

(k)
n−2− 2d

(k−1)
n−3 − d

(k−2)
n−3 − d

(k−1)
n−4 + d

(k−2)
n−4 +

d
(k−2)
n−5 .

Asymptotic formula. For k ≥ 1,

d(k)n ∼ φk+1 − φ− 1

φ2 + 1
φn−2k+1. (n → ∞)

Mean and variance. For n > 0, the expected value of the first part of an Arndt composition of
size n is

2
fn+1

fn
− 1

4fn
(2n+ 7 + (−1)n) + 1 ∼ 2 +

√
5. (n → ∞)

The variance is

−
(
2
fn+1

fn

)2

+
fn+1

f 2
n

(2n+ 7 + (−1)n) + 6
fn+1

fn
−
(
2n+ 7 + (−1)n

4fn

)2

− 6n2 + 30n+ 55 + (−1)n(2n− 7)

8fn
+ 6 ∼ 3 +

√
5. (n → ∞)

The CV is asymptotically
√

3+
√
5

2+
√
5

≈ 0.540 182. The cumulative sequence matches2 with OEIS
A129696.

n∑
k=1

kd(k)n = [zn]
∂

∂u
D(z, u)

∣∣∣∣
u=1

= 2fn+1 + fn −
1

4
(2n+ 7 + (−1)n) = fn+3 − ⌊n/2⌋ − 2.

Also,

[zn]
∂2

∂u2
D(z, u)

∣∣∣∣
u=1

= 8fn+1 + 6fn −
1

8

(
6n2 + 34n+ 69 + (−1)n(2n− 5)

)
.

2.4. Size of the Largest and Smallest Summands
To classify Arndt compositions based on the size of the largest and smallest summands, we can
leverage some of the results obtained inChapter 1. First, we need to find the generating function
G(k)(z) for those Arndt compositions that use parts from the set {1, . . . , k} and the function
H(k)(z) for those that use parts from {k, k + 1, . . .}.
2See Emeric Deutsch entry.

https://oeis.org/A129696
https://oeis.org/A129696
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For the first one, we will construct a functionM
(k)
G (z) analogous toM (≥1)(z) from Lemma 1.5,

but this time we have to restrict the parts. The functionM
(k)
G (z) corresponds to the g.f. of those

Arndt compositions that use two summands and, in addition, have parts less than or equal to a
positive k. In this case, each pair of summands consists of a first summand less than or equal to
k and a second summand smaller than the first. Then,

M
(k)
G (z) =

k∑
j=1

zj

(
j∑

i=1

zi

)
=

k∑
j=1

zj
z − zj

1− z
=

z2(1− zk)(z − zk)

(1− z)2(1 + z)
.

Analogously to Theorem 1.7, the generating function for Arndt compositions whose parts are
restricted to {1, . . . , k} is obtained from the functional system

G(k)
e (z) =

M
(k)
G (z)

1−M
(k)
G (z)

, G(k)
o (z) =

(
1 +G(k)

e (z)
) z − zk+1

1− z
,

G(k)(z) = G(k)
e (z) +G(k)

o (z),

whose solution is

G(k)(z) =
z − zk+1

1− z − z2 + zk+1
.

From this function, we have the following result.

Theorem 2.26. The g.f. L(k)(z) for the number of Arndt compositions whose largest summand is
k ≥ 1, is given by

L(k)(z) = G(k)(z)−G(k−1)(z) =
zk(1 + z)(1− z)2

(1− z − z2 + zk)(1− z − z2 + zk+1)
.

Proof. This idea comes from [23, Ch. 6]. In Problem 13, they count the number of com-
positions whose largest summand is k by constructing analogous functions to G and L. The
subtraction makes sense because once we take all Arndt compositions of some integer n with
parts at most k and then subtract those whose parts are at most k − 1, those that survive have
parts at most k but at least one summand of size exactly k.

Similarly, to discriminate by the smallest summand, we construct the function M
(k)
H (z). Each

pair of summands has a second summand of size at least k, and a first summand larger than the
second. Therefore,

M
(k)
H (z) =

∑
j≥k

(
∞∑

i=j+1

zi

)
zj =

∑
j≥k

zj+1

1− z
zj =

z2k+1

(1− z)2(1 + z)
.

The functional system is

H(k)
e (z) =

M
(k)
H (z)

1−M
(k)
H (z)

, H(k)
o (z) =

(
1 +H(k)

e (z)
) zk

1− z
,

H(k)(z) = H(k)
e (z) +H(k)

o (z),

and the solution

H(k)(z) =
zk − zk+2 + z2k+1

1− z − z2 + z3 − z2k+1
.
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Theorem 2.27. The g.f. S(k)(z) for the number of Arndt compositions whose smallest summand is
k ≥ 1, is given by

S(k)(z) = H(k)(z)−H(k+1)(z) =
zk(1 + z)(1− z)2(1− z − z2 + z3 + zk+1 − zk+3 + z2k+2)

(1− z − z2 + z3 − z2k+1)(1− z − z2 + z3 − z2k+3)
.

When studying the statistics in the previous sections, the abundance of results relied heavily on
the ease of finding the roots of the denominators of the generating functions. However, this is
not the case, and we can barely conclude the recurrence relation derived from each denominator.
Nevertheless, in the author’s view, this statistic is equally valuable as all the others.

Example 2.28. The first terms of L(4)(z) are

L(4)(z) = z4 + z5 + 2z6 + 4z7 + 6z8 + 10z9 + 16z10 +O(z11).

Out of the 21 Arndt compositions of 8, six of them have 4 as the largest summand—see Figure
2.3. Both sequences are listed in Tables B.10 and B.12. ◁

Figure 2.3. Compositions inA8 whose largest summand is 4.

2.5. Interior Lattice Points and Semiperimeter
To finish our study on statistics, we will classify Arndt compositions based on the number of
interior points and the semiperimeter of the associated bar graphs for each composition.

This section is motivated by the work done in [17] and [15], where they count, respectively, the
number of interior points in bar graphs of compositions and Catalan words.

We define a point to be interior to a bar graphwhen it is adjacent to four different cells of the bar
graph; otherwise, we say it is a boundary point. On the other hand, the perimeter of a bar graph
is always even, making it simpler to count the semiperimeter—the half of the perimeter—so as
not to unnecessarily increase the number of times we differentiate the generating function to
obtain each coefficient.

Let int(x) be the number of interior points of the associated bar graph for x and sp(x) be its
semiperimeter. For example, int(5365437) = 15 and sp(5365437) = 19—see Figure 2.4.
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Figure 2.4. Interior points of 5365437 ∈ A33.

Let A(k)(z, p, q) be the generating function of Arndt compositions whose last part is k; as usual,
the variable z tracks the size of the composition and p and q track the semiperimeter and the
number of interior points, respectively. Again, we separateA intoAo andAe.

A(k)
o (z, p, q) =

∑
x∈C(k)

o

z|x|psp(x)qint(x), A(k)
e (z, p, q) =

∑
x∈C(k)

e

z|x|psp(x)qint(x),

A(k)(z, p, q) = A(k)
o (z, p, q) + A(k)

e (z, p, q) =
∑

x∈C(k)

z|x|psp(x)qint(x).

For k ≥ 1, we separate both functions according to the cases that can occur in the last summand.
For the case of odd compositions, the last summand can be only one—in the case of having only
one summand—and the semiperimeter is one less than the number of cells; there are no interior
points. When there is more than one summand, the last summand can be greater than or equal
to, or less than the penultimate one. If the former occurs, the number of interior points increases
by one less than the size of the penultimate summand, and the semiperimeter increases by one
more than the difference between the last and penultimate summands—see Figure 2.5.

...
...

Ae
k

i ...
...

Ae
i

k

Figure 2.5. Cases for interior points and semiperimeter decomposition.

If, on the other hand, the last summand is smaller, the semiperimeter only increases by one unit,
and the number of interior points does it by one less than the size of the last summand. This
translates into the equation (2.7).

When the composition is odd, the last summand must always be smaller; hence, equation (2.8)
is derived.

A(k)
o (z, p, q) = zkpk+1 + zk

k∑
i=1

A(i)
e (z, p, q)pk−i+1qi−1 + zkpqk−1

∑
i>k

A(i)
e (z, p, q), (2.7)
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A(k)
e (z, p, q) = zkpqk−1

∑
i>k

A(i)
o (z, p, q). (2.8)

Define A(z, p, q|v) :=
∑

k≥1 A
(k)(z, p, q)vk, similarly for Ao(z, p, q|v) and Ae(z, p, q|v). By mul-

tiplying (2.7) by vk and summing over k ≥ 1 we obtain

Ao(z, p, q|v) =
p2vz

1− pvz
+

p

q

∑
k≥1

k∑
i=1

A(i)
e (z, p, q)pk−iqizkvk +

p

q

∑
k≥1

∑
i>k

A(i)
e (z, p, q)qkvkzk.

Note that
∑

i>k A
(i)
e (z, p, q) = Ae(z, p, q|1)−

∑k
i=1 A

(i)
e (z, p, q), then

Ao(z, p, q|v) =
p2vz

1− pvz
+

p

q

∑
k≥1

k∑
i=1

A(i)
e (z, p, q)pk−iqizkvk

+
p

q

(
qvz

1− qvz
Ae(z, p, q|1)−

∑
k≥1

k∑
i=1

A(i)
e (z, p, q)qkvkzk

)
.

Using Cauchy product for series we can simplify these sums to

Ao(z, p, q|v) =
p2vz

1− pvz
+

p

q

(∑
k≥1

A(k)
e (z, p, q)qkvkzk

)(∑
k≥0

pkvkzk

)

+
p

q

(
qvz

1− qvz
Ae(z, p, q|1)−

(∑
k≥1

A(k)
e (z, p, q)qkvkzk

)(∑
k≥0

qkvkzk

))

=
p2vz

1− pvz
+

p

q
Ae(z, p, q|qvz)

1

1− pvz

+
p

q

(
qvz

1− qvz
Ae(z, p, q|1)− Ae(z, p, q|qvz)

1

1− qvz

)
=

p2vz

1− pvz
+

pvz

1− qvz
Ae(z, p, q|1) +

p

q

(
1

1− pvz
− 1

1− qvz

)
Ae(z, p, q|qvz).

(2.9)

Analogously, by multiplying (2.8) by vk and adding over k ≥ 1 we get

Ae(z, p, q|v) =
pvz

1− qvz
Ao(z, p, q|1)−

p

q (1− qvz)
Ao(z, p, q|qvz). (2.10)

Let |z| , |p| , |q| , |v| < 1. By iterating3 equations (2.9) and (2.10) infinitely many times, we ob-
tain

Ae(z, p, q|v) = −
∑
n≥1

p2n+1(q − p)n−1q(n−1)2vnzn(n+1)(∏n−1
k=1 1− q2kvz2k

)
(
∏n

k=1(1− q2k−1vz2k−1)(1− pq2k−1vz2k))

+
∑
n≥1

p2n−1(q − p)n−1q(n−1)2vnzn(n+1)−1

(
∏n

k=1 1− q2k−1vz2k−1)
(∏n−1

k=1(1− pq2k−1vz2k)(1− q2kvz2k)
)Ao(z, p, q|1)

3Do not worry! You can check this using the code provided in Appendix A.5.
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−
∑
n≥1

p2n(q − p)n−1q(n−1)2vnzn(n+1)(∏n−1
k=1 1− pq2k−1vz2k

)
(
∏n

k=1(1− q2k−1vz2k−1)(1− q2kvz2k))
Ae(z, p, q|1),

(2.11)

Ao(z, p, q|v) =
∑
n≥1

p2n(q − p)n−1q(n−1)(n−2)vnzn
2

(
∏n

k=1 1− pq2k−2vz2k−1)
(∏n−1

k=1(1− q2k−1vz2k−1)(1− q2kvz2k)
)

−
∑
n≥1

p2n(q − p)nqn(n−1)vn+1zn(n+2)∏n
k=1(1− pq2k−2vz2k−1)(1− q2k−1vz2k−1)(1− q2kvz2k)

Ao(z, p, q|1)

+
∑
n≥1

p2n−1(q − p)n−1q(n−1)(n−2)vnzn
2

(
∏n

k=1 1− q2k−1vz2k−1)
(∏n−1

k=1(1− pq2k−2vz2k−1)(1− q2kvz2k)
)Ae(z, p, q|1).

(2.12)

The denominators in the sums can be expressed in terms of the q-Pochhammer symbol. Taking
v → 1− and recalling that Ao(z, p, q|1) = Ao(z, p, q) and Ae(z, p, q|1) = Ae(z, p, q), we have the
following theorem.

Theorem 2.29. The g.f.s for the number of interior points and the semiperimeter of Arndt compo-
sitions are given by the formulas

Ae(z, p, q) =

det
[
α1 β1

α2 1 + β2

]
(z, p, q)

det
[

β1 1 + γ1
1 + β2 γ2

]
(z, p, q)

, Ao(z, p, q) =

det
[
α1 1 + γ1
α2 γ2

]
(z, p, q)

det
[

β1 1 + γ1
1 + β2 γ2

]
(z, p, q)

,

A(z, p, q) = Ae(z, p, q) + Ao(z, p, q) =

det
[
α1 1 + β1 + γ1
α2 1 + β2 + γ2

]
(z, p, q)

det
[

β1 1 + γ1
1 + β2 γ2

]
(z, p, q)

,

where det
[
f1 f2
f3 f4

]
(z, p, q) stands for det

(
f1(z,p,q) f2(z,p,q)
f3(z,p,q) f4(z,p,q)

)
and α1, β1, γ1, α2, β2, γ2 are the func-

tions

α1(z, p, q) =
∑
n≥1

p2n+1(q − p)n−1q(n−1)2zn(n+1)

(q2z2; q2z2)n−1(qz, pqz2; q2z2)n
, α2(z, p, q) =

∑
n≥1

p2n(q − p)n−1q(n−1)(n−2)zn
2

(pz; q2z2)n(qz; qz)2n−2
,

β1(z, p, q) =
∑
n≥1

p2n−1(q − p)n−1q(n−1)2zn(n+1)−1

(q2z2, pqz2; q2z2)n−1(qz; q2z2)n
, β2(z, p, q) =

∑
n≥1

p2n(q − p)nqn(n−1)zn(n+2)

(pz; q2z2)n(qz; qz)2n
,

γ1(z, p, q) =
∑
n≥1

p2n(q − p)n−1q(n−1)2zn(n+1)

(pqz2; q2z2)n−1(qz; qz)2n
, γ2(z, p, q) =

∑
n≥1

p2n−1(q − p)n−1q(n−1)(n−2)zn
2

(qz; q2z2)n(pz, q2z2; q2z2)n−1
.

Although these expressions may seem initially challenging to handle—there would not even be
a possibility of obtaining a closed formula for the counting sequences—there is a lot of informa-
tion we can derive from them, including the cumulative generating functions and therefore the
mean and variance. But first of all, let us look some examples and observations.

Example 2.30. The first terms ofA(z, p, q) are4

A(z, p, q) = p2z + p3z2 + 2p4z3 + 3p5z4 +
(
4p6 + p5q

)
z5 +

(
6p7 + 2p6q

)
z6

4See how to manipulate these expressions in Appendix A.6.
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+
(
9p8 + 2p7q + 2p6q2

)
z7 +

(
13p9 + 3p8q + 5p7q2

)
z8

+
(
19p10 + 5p9q + 8p8q2 + 2p7q3

)
z9

+
(
28p11 + 7p10q + 14p9q2 + 5p8q3 + p7q4

)
z10 +O

(
z11
)

The term 5p8q3z10 indicates that there are 5Arndt compositions of size 10, with a semiperimeter
of 8 and 3 interior points. All of them are shown in Figure 2.6. Also, see Tables B.14 and B.17.

Figure 2.6. Bar graphs inA10 with 3 interior points, and semiperimeter of 8.

Note that the multidegree i + j of each term piqj is always one more than the degree in the
corresponding variable z; there is no term that does not satisfy this condition. This is not a
coincidence, it is the result of Pick’s theorem. ◁

Theorem 2.31 (Pick). The area of any—not necessarily convex—simple polygon Q ⊆ R2 with
integral vertices is given by

A(Q) = I +
B

2
− 1,

where I andB are respectively the number of integral points in the interior and the boundary ofQ.
Proof. Pick’s theorem is one of many consequences of Euler’s characteristic equation. See

all the details in [1, Ch. 13]†.

In the particular case of bar graphs, the perimeter coincides with the number of points on the
boundary. Therefore, the sum of the number of interior points with the semiperimeter always
exceeds by one the area of each composition, which is simply its size.

In this way, it becomes interesting to study the cumulative sequences. If i(k)n denotes the num-
ber of Arndt compositions of size n with k interior points, and s

(k)
n the number of those with

semiperimeter k, we should have∑
x∈An

area(x) =
∑
x∈An

int(x) +
∑
x∈An

sp(x)−
∑
x∈An

1,

nfn =
∑
k≥0

ki(k)n +
∑
m≥0

ms(m)
n − fn. (2.13)

This can be verified from the respective generating functions. Although the expressions inThe-
orem 2.29 may seem unwieldy, we could find the first two moments, as by differentiating and
evaluating respectively at q = 1 or p = 1, a large portion of the sums cancel out. In this way,
we have calculated the generating functions for the total number of interior points and the total
semiperimeter for all Arndt compositions of a certain size n.
†Wedeeply regret the passing ofMr. Aigner inOctober of this year. We extend our condolences to his family. His
legacy as a mathematician and communicator will endure in our community.
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Theorem 2.32 (Cumulative g.f.s). The generating function of the total number of interior points
in all Arndt compositions of size n is given by

∑
n≥1

∑
k≥0

ki(k)n zn =
∂

∂q
A(z, 1, q)

∣∣∣∣
q=1

=
z5 (1 + z2 − z4 − z6 + z7)

(1− z3)(1− z4)(1− z − z2)2
, (2.14)

and the g.f. for the total semiperimeter is

∑
n≥1

∑
k≥0

ks(k)n zn =
∂

∂p
A(z, p, 1)

∣∣∣∣
p=1

=
z (2− z − 2z3 − 2z4 + z5 − z6 + 2z7 + z10 − z11)

(1− z3)(1− z4)(1− z − z2)2
.

(2.15)

These functions satisfy

zF ′(z) =
∂

∂q
A(z, 1, q)

∣∣∣∣
q=1

+
∂

∂p
A(z, p, 1)

∣∣∣∣
p=1

− F (z),

which is equivalent to equation (2.13). On the other hand, if we expand the function (2.14) into
partial fractions, we obtain the formula for the total number of interior points of compositions
inAn for n ≥ 2.∑

k≥0

ki(k)n = [zn]

(
−3 + z +

1

12(−1 + z)2
− 3

8(−1 + z)
+

1

8(1 + z)
+

7 + z

100 (1 + z2)

+
−49 + 82z

10 (−1 + z + z2)2
+

−733 + 724z

100 (−1 + z + z2)
− 1

12 (1 + z + z2)

)
=

2(115n− 247)fn − (130n− 243)fn+1

100
+

n

12
+

11

24
+

(−1)n

8

+
1

100

(
7 cos

(nπ
2

)
+ sin

(nπ
2

))
− 1

6
√
3
sin
(
2π(n+ 1)

3

)
(2.16)

∼ −65 + 33
√
5

100
nφn. (n → ∞)

The asymptotic formula can also be deduced fromTheorem0.2. We could do the same on (2.15)
to find the cumulative sequence of the semiperimeter, but by using the equation (2.13), we save
ourselves all those calculations.

∑
m≥0

ms(m)
n = (n+ 1)fn −

n∑
k=0

ki(k)n

=
(−130n+ 594)fn + (130n− 243)fn+1

100
− n

12
− 11

24
− (−1)n

8

− 1

100

(
7 cos

(nπ
2

)
+ sin

(nπ
2

))
+

1

6
√
3
sin
(
2π(n+ 1)

3

)
(2.17)

∼
13
(
5−

√
5
)

100
nφn. (n → ∞)



Interior Lattice Points and Semiperimeter • 39

Fromhere, we can also deduce themean and variance for both sequences, for whichwewill need
the second derivative of each g.f. However, on this occasion, we prefer to calculate the terms that
are significant, since the partial fractions of these are extensive. In the case of interior points,

∂2

∂q2
A(z, 1, q)

∣∣∣∣
q=1

=
−1127 + 1825z

10 (1− z − z2)3
+

288803− 322647z

1100 (1− z − z2)2
+

−25128754 + 18156363z

121000 (1− z − z2)

+ 58− 18z + 4z2 +
1

240(1− z)5
− 1

288(1− z)4
+

61

360(1− z)3

+
19

1728(1− z)2
− 14183

57600(1− z)
− 1

192(1 + z)3
+

23

128(1 + z)2

+
49

2304(1 + z)
+

221 + 28z

1000 (1 + z2)2
+

−1879− 119z

2000 (1 + z2)
+

−2 + z

72 (1− z + z2)

− 8 + 3z

36 (1 + z + z2)2
+

5(13− 3z)

108 (1 + z + z2)
+

2 (96 + 7z + 58z2 − 46z3)

3025 (1 + z + z2 + z3 + z4)
.

The significant terms only come from the first three summands, since the roots of the denomina-
tors of the other terms are all roots of unity. By using expressions (2.1) and (2.2), and simplifying
with aim of (2.3) and (2.4), the n-th term of the above expression is

[zn]
∂2

∂q2
A(z, 1, q)

∣∣∣∣
q=1

=
1

121000

((
11249617− 6062166n+ 844580n2

)
fn

−2
(
3498562− 1864841n+ 259545n2

)
fn+1

)
+O

(
n4
)
. (2.18)

For the variance of the semiperimeter, we could do the same, but again, it is not worth it. It can
also be deduced from the formula we obtain for the variance of the interior points because, in
fact, they are the same.

Theorem 2.33 (Mean and Variance). For n ≥ 3, the mean for the number of interior points in
Arndt compositions is

243− 130n

100
· fn+1

fn
+

115n− 247

50
+O

(
nφ−n

)
∼ 33− 13

√
5

20
n, (n → ∞)

the mean for the semiperimeter is

130n− 243

100
· fn+1

fn
+

−65n+ 297

50
+O

(
nφ−n

)
∼

13
(
−1 +

√
5
)

20
n, (n → ∞)

and the variance for both parameters is

−
(
130n− 243

100
· fn+1

fn

)2

+
511225n2 + 1664300n− 9495194

302500
· fn+1

fn

+
1022450n2 − 15171310n+ 38495207

605000
+O

(
n4φ−n

)
∼ 65009

√
5− 141335

11000
n. (n → ∞)
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Proof. The mean of both parameters is deduced fromTheorem 0.3 and equations (2.16)
and (2.17). Similarly, the variance of the interior points from (2.18). We only need to answer,
why is it the same for the semiperimeter?

To do this, let us abuse the notation a bit from the mentioned theorem. Every time we calculate
the variance of either parameter for a fixed n, this n can be taken as a constant. Therefore, by
Pick’s theorem, we have V(sp) = V(n + 1 − int). Variance is preserved when adding constants,
so

V(sp) = V(− int) = (−1)2V(int) = V(int).

TheCV asymptotically approaches zero, i.e. both parameters tend to cluster around their respec-
tive means.

We could have overlooked Pick’s theorem andwould have obtained the same results; however, it
has saved us a lot of work and allows us to understand the relation between both parameters.

Thus, we conclude this chapter of statistics, where our goal was not only to answer significant
questions about Arndt compositions but also to invite the reader to go beyond and hopefully,
just as they can take away many answers, also leave with more curious questions. We will answer
some in the chapter on generalizations, but, as mentioned before, creativity knows no bounds,
and there will still be much to explore.



Chapter 3

Generalizations of Arndt Compositions

In this chapter, we will explore some generalizations of Arndt compositions by modifying the
constraint of Definition 1.1 and adjusting the proof of Theorem 1.7. The first two have previ-
ously been studied by Hopkins and Tangboonduangjit, and we have verified their results.

3.1. k-Arndt Compositions
Definition 3.1. LetA(k) be the class of compositions whose summands satisfy x2i−1 ≥ k+ x2i

for i > 0 and any integer k. These are called k-Arndt compositions. □

Under this definitionA = A(1). Note that unlike the statistics we have studied previously, this
parameter k is not additive, that is, it is generally not true that the intersection A(i) ∩ A(j) is
empty for some pair of integers i, j. In fact, Ai ⊃ Aj if i < j. Therefore, it is not meaningful to
defineA(≥k)(z).

Theorem 3.2. For k > 0, the generating function ofA(k) corresponds to

A(k)(z) =


z − z3 + zk+2

1− z − z2 + z3 − zk+2
, if k ≥ 0

z + z2 − z−k+3

1− z − 2z2 + z−k+3
, if k < 0.

Thus, byTheorem 1.7,

a(k)n = a
(k)
n−1 + a

(k)
n−2 − a

(k)
n−3 + a

(k)
n−k−2, (3.1)

for all n > k + 2 and k > 0. For k < 0 and n > −k + 3,

a(k)n = a
(k)
n−1 + 2a

(k)
n−2 − a

(k)
n+k−3. (3.2)

Proof. Theproof of this theorem is analogous toTheorem 1.7, we only need to replace the
expression ofM (≥1)(z) withM (≥k)(z) given in formula (1.1).

In [11, §3] and [12, §4], Hopkins and Tangboonduangjit explored this sequence under the re-
striction x2i−1 > k + x2i, so by substituting k − 1 instead of k in the recurrences (3.1) and (3.2),
the same formulas are obtained. The reason for choosing our definition in this way is that by
doing so, k becomes the smallest difference between each summand, which is more convenient
for us. In addition, we have proven the next result, which is equivalent to Corollary 3.3 in the
former article—see Table B.20.

41
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Corollary 3.3. For any k, the number of k-Arndt odd compositions in is a(k)n−1, hence the number
of k-Arndt even compositions is a(k)n − a

(k)
n−1.

Proof. Similarly, one can prove that the generating functions ofA(k)
o and A(k)

e are, respec-
tively,

A(k)
o (z) =


z − z3

1− z − z2 + z3 − zk+2
, if k ≥ 0

z − z3

1− z − 2z2 + z−k+3
, if k < 0,

and

A(k)
e (z) =


zk+2

1− z − z2 + z3 − zk+2
, if k ≥ 0

z2 + z3 − z−k+3

1− z − 2z2 + z−k+3
, if k < 0.

Regardless of the sign of k, A(k)
o (z) = z + zA(k)(z), hence the number of k-Arndt odd com-

positions is a(k)n−1 for n > 1. Since A(k)
e (z) = A(k)(z) − A

(k)
o (z), the number of k-Arndt even

compositions is a(k)n − a
(k)
n−1.

3.2. On the Absolute Difference Between Pairs of Summands
As of now, this result has not been formally published, but in the talk [10], Hopkins mentions
having found a recurrence formula for the case where we are interested in the absolute difference
between the summands. That is, nowwe count in the same case when x2i−1−x2i ≥ k or x2i−1−
x2i ≤ −k for k > 0. What we present next aligns with what they observed.

Theorem3.4. LetR(k) the class of compositions whose summands satisfy |x2i−1 − x2i| ≥ k for any
integer k. Its generating function is

R(k)(z) =


z − z3 + 2zk+2

1− z − z2 + z3 − 2zk+2
, if k > 0,

z

1− 2z
, if k ≤ 0.

from where r(k)n = r
(k)
n−1 + r

(k)
n−2 − r

(k)
n−3 + 2r

(k)
n−k−2 for k > 0 and n > k + 2.

Proof. Once again, we need to substituteM (≥1)(z) fromTheorem 1.7 with the generating
function of compositions with two summands whose absolute difference is k. For k > 0, this
expression is derived from Lemma 1.4:

M
(k)
R (z) =

∑
j≥k

M (j)(z) +
−k∑

j=−∞

M (j)(z) =
2zk+2

(1− z)(1− z2)
.
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Hence,

R(k)
e (z) =

M
(k)
R (z)

1−M
(k)
R (z)

and R(k)
o (z) =

(
1 + R(k)

e (z)
) z

1− z
,

giving

R(k)(z) = R(k)
e (z) + R(k)

o (z) =
z − z3 + 2zk+2

1− z − z2 + z3 − 2zk+2
.

The case k ≤ 0 is trivial, we would simply obtain the g.f. of all—non-empty—compositions,
without any restrictions.

When k = 1, the counting sequence is related to theTribonacci numbers (OEIS A000073). This
sequence is defined as tn = tn−1 + tn−2 + tn−3 for n > 2 with the initial conditions t0 = t1 = 0
and t2 = 1. The generating function for Tribonacci numbers is

T (z) =
z2

1− z − z2 − z3
.

On the other hand,

R(1)(z) =
z + z3

1− z − z2 − z3
= (z−1 + z)T (z),

hence, the number of compositions of size n inR(1) is r(1)n = tn+1 + tn−1 for all n ≥ 1.

This observation is crucial because it serves as a bridge between the research carried out in [10]
and [2]. In his talk, Hopkinsmentions the same, that these compositions—referred to by him as
pairwise Carlitz compositions—are counted by Tribonacci numbers. Meanwhile, Andrews et al.
count the number of anti-palindromic compositions of any length with the Tribonacci numbers.
This follows from the bijection we provided inTheorem 2.15.

If, on the other hand, the condition were |x2i−1 − x2i| ≤ k, we would obtain the generating
function

z + z2 − 2zk+3

1− z − 2z2 + 2zk+3

for all k ≥ 0 by proceeding similarly—see Tables B.21 and B.22.

3.3. On Multiplying the Restriction by a Constant
We have also been able to determine what happens when either side of the constraint is multi-
plied by a positive integer—see Tables B.23 and B.24.

Theorem 3.5. For a, b ∈ Z+, the g.f. of the sequence that counts those compositions such ax2i−1 >
x2i for i > 0, has the expression

z − za+1

1− 2z + za+2
,

and the g.f. for those such x2i−1 > bx2i is
z

1− z − zb+1
.

https://oeis.org/A000073
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Proof. Once more, we are interested solely in the g.f. of the blocks of pairs of summands.
They are, respectively,

Ma(z) =
∑
j≥1

zj

(
aj−1∑
m=1

zm

)
=

z (z − za + za+1 − za+2)

(1− z)2 (1− za+1)
,

and

Mb(z) =
∑
j≥1

( ∑
m≥bj+1

zm

)
zj =

zb+2

(1− z)(1− zb+1)
.

The problem of how to involve simultaneous multiplication by constants and the addition of
another integer in the inequality remains open. In other words, the counting problem when the
restriction is ax2i−1 ≥ bx2i + c for a, b, c ∈ Z+. This introduces some complexity since there are
more cases to consider, depending on whether these constants are coprime or not, and the same
for the summands.

3.4. k-Block Arndt Compositions
Finally, we will present whatmay be themost natural generalization of Arndt compositions. Per-
haps the reader has wondered: What happens when, instead of comparing pairs of summands,
we compare triples or quadruples? What happens when we consider k decreasing summands as
blocks of Arndt compositions? To address this, we introduce the following definition.

Definition 3.6. Let W (k) be the class of—non-empty—compositions that satisfy xki−k+1 >
xki−k+2 > · · · > xki for k ∈ Z+ and i > 0. These are called k-block Arndt compositions. □

Finding the generating function is straightforward if we consider that a composition of k de-
creasing summands is just a partition with k distinct parts, whose g.f. was found in equation
(0.2). Thus, we can decompose a k-block Arndt composition as an arbitrary—possibly empty—
sequence of partitionswith k distinct parts, concatenated at the endwith a partitionwith atmost
k distinct parts. This last partition would be analogous to the last summand of Arndt compo-
sitions, since the restriction of Definition 3.6 may be vacuously satisfied for the last summands.
Thus, we have the following theorem—see Table B.25.

Theorem 3.7. The g.f. of the number of k-block Arndt compositions is

W (k)(z) =
1

1− P
(k)

diff (z)

k∑
j=1

P
(j)

diff(z) =

∑k
j=1 z

(j+1
2
)/(z; z)j

1− z(
k+1
2
)/(z; z)k

.

We conclude the chapter on generalizations. It may be intriguing for another project to explore
how these generalized objects can be studied using the same statistics from Chapter 2.



Conclusions
We have extensively studied Arndt compositions, discovering previously unknown results such
as recurrence relations, new combinatorial interpretations of Fibonacci numbers, asymptotic es-
timates, and more. This was made possible thanks to the symbolic method, as several findings
are not trivial to obtain through a purely bijective approach.

In [13], a good analogy is given for what one expects to accomplish when studying a sequence:
the tetrahedron formed by symbolic sums, generating functions, recurrence relations, and asymp-
totic estimates. This was completed for several of the presented sequences.

The decomposition of this object into blocks of pairs of summands was essential, allowing us
not only to provide an alternative proof to that presented byHopkins and Tangboonduangjit in
[11], but also to obtain information on some statistics as in Section 2.4, as well as generalizations
in Chapter 3. All of this while keeping in mind the combinatorial properties of the object.

Despite the different approach to the problem, it largely captures the essence of the object’s struc-
ture. The bijective interpretation of the presented recurrences and identities, especially those in
Section 2.1, remains pending. In the document, we have focused merely on proving these rela-
tions, but there is still the task of studying them in depth from a computational perspective, such
as the time and efficiency required to execute them.

Furthermore, future research could explore the statistics from Chapter 2 to the generalizations
in Chapter 3. One that captivates the author’s attention is the counting of interior points and
semiperimeter in the k-block Arndt compositions. The determinants ofTheorem 2.29 are likely
to be generalized to those of squarematrices of size k. Although this can be approached similarly,
the use of Gröbner bases may lead to simpler answers—see [3]. Another problem that may arise
from this object is the counting of peaks and valleys in the corresponding bar graphs, as well as
the occurrence of descending or ascending patterns—see [4].

Finally, further inquiries into restrictions on pairs of summands can be pursued; this work may
contribute to other related projects.
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Appendix A

Wolfram Mathematica Algorithms

To execute these algorithms we recommend having version 12.1 ofWolfram Mathematica, or
higher. In case you do not have a license, you can run them on the free version ofWolframCloud.
Find the files on the repository https://github.com/dfcheca/Arndt-Compositions.

A.1. Mean and Variance
Filename: mean-variance-gf.nb

To calculate the mean and variance, you must first define a bivariate generating function. We
take as an example the one that counts compositions of n and the number of summands, but you
can replace it with any other function.

In[1]:= A[z_,u_]:=
1-z

1-z-u z

In the next entry, the functions for the mean, second moment, and variance are defined.

In[2]:= Mn[A_,n_]:=
SeriesCoefficient[∂∂∂uA[z,u]/. u→→→1,{z,0,n}]

SeriesCoefficient[A[z,1],{z,0,n}]
;

SecM[A_,n_]:=
SeriesCoefficient[∂∂∂{u,2}A[z,u]/. u→→→1,{z,0,n}]

SeriesCoefficient[A[z,1],{z,0,n}
+Mn[A,n]];

Var[A_,n_]:=SecM[A,n]-Mn[A,n]2

Now, we compute the mean and variance for the distribution given by A[z,u] in terms of n.

In[3]:= Mn[A,n] // FullSimplify
Var[A,n] // FullSimplify

Out[3]= Piecewise[{{(1+n)/2,n>0},{0,n==0}},Indeterminate]

Out[4]= Piecewise[{{(1/4)*(-1+n),n>0},{0,n==0}},Indeterminate]

When running these codes for the generating functions in Chapter 2, you may not obtain ex-
pressions as fancy as those shown in the document. However, if you use the built-in function
DiscreteAsymptotic, you will be able to obtain the asymptotic formulas we have seen. For
example, let us find the assymptotic formula for the mean of b(k)n .

In[5]:= B[z_,u_]:=
u z-u z3+u2z3

1-z-z2+z3-u2z3
;

Mn[B, n] // FullSimplify
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Out[5]= Piecewise[{{1,n==1},{(10*(Sqrt[5]-1)*n
+(15*(Sqrt[5]+1)*(1-Sqrt[5])^n*(2*n-5))/((Sqrt[5]+1)^n-(1-Sqrt[5])^n)
-18*Sqrt[5]+60)/(5*(Sqrt[5]+5)),n>1},
{0,Inequality[0,LessEqual,n,Less,1]}},Indeterminate]

In[6]:= DiscreteAsymptotic[(10*(Sqrt[5]-1)*n
+(15*(Sqrt[5]+1)*(1-Sqrt[5])^n*(2*n-5))/((Sqrt[5]+1)^n-(1-Sqrt[5])^n)
-18*Sqrt[5]+60)/(5*(Sqrt[5]+5)),n→→→Infinity]//FullSimplify

Out[6]= (-1+
3√
5
)n

A.2. Computing Arndt Compositions
Filename: arndtcompositions.nb

This code was provided by Professor José Luis.

Mathematica has the built-in function IntegerPartitions to generate integer partitions—see
[30]—. We construct the function IntegerCompositions to generate integer compositions,
which works in a similar manner.

In[1]:= IntegerCompositions[n_]:=
Flatten[Permutations/@IntegerPartitions[n],1];

IntegerCompositions[n_,{m_}]:=
Flatten[Permutations/@IntegerPartitions[n,{m}],1]

Now, we define the criterion ArndtCondition, which compares each pair of summands and de-
cides whether a composition is of Arndt or not; and the ArndtCompositions function, which
generates all Arndt compositions of a given integer.

In[2]:= ArndtCondition[X_]:=
AllTrue[Flatten[Differences/@Partition[X,2]],Negative];

ArndtCompositions[n_]:=
Select[IntegerCompositions[n],ArndtCondition];

ArndtCompositions[n_,{k_}]:=
Select[IntegerCompositions[n,{k}],ArndtCondition]

For example, these are the Arndt compositions of 5.

In[3]:= ArndtCompositions[5]

Out[3]= {{5},{4,1},{3,2},{3,1,1},{2,1,2}}

And this is the counting sequence.

In[4]:= Table[Length[ArndtCompositions[n]],{n,1,20}]

Out[4]= {1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765}

https://github.com/dfcheca/Arndt-Compositions/blob/f89b404498d2ada4e31015ddff058ddade467d7a/codes/arndtcompositions.nb
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A.3. Bar Graphs

Filename: bargraphs.nb

The function CompositionBarGraph displays a bar graph from a composition written as a list.

In[1]:= CompositionBarGraph[X_,size_]:=Graphics[{EdgeForm[Thickness[Tiny]],
Transparent,Flatten[Table[Rectangle[{i-1,j-1}],{i,1,Length[X]},
{j,1,X[[i]]}]]},ImageSize→→→size*Length[X]];

CompositionBarGraph[X_]:=CompositionBarGraph[X,8]

If you call the function with two arguments, the first one will be the composition to represent,
and the second one will be the desired size in printer points per each summand. If you call it
with only one argument, the composition will be represented with a default size of 8.

In[2]:= CompositionBarGraph[{5,2,6,3,8}]

Out[2]=

In[3]:= CompositionBarGraph[{2,5,4,3,1},20]

Out[3]=

If you additionally include all the definitions from the arndtcompositions.nb file, you can list
all Arndt compositions as bar graphs.

In[4]:= CompositionBarGraph/@ArndtCompositions[8]

Out[4]= { , , , , , , , , , , , , , , ,

, , , , , }

https://github.com/dfcheca/Arndt-Compositions/blob/f89b404498d2ada4e31015ddff058ddade467d7a/codes/bargraphs.nb
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A.4. Zeilberger’s and Petkovšek’s Algorithms

Filename: zeilberger-and-petkovsek.nb

The Zeilberger algorithm can be implemented using the package RISCErgoSum, created by the
Research Institute for Symbolic Computation (RISC), available at [21]. This code is password-
protected and is not allowed for distribution, but simply sending an email to Professor Peter
Paule (Peter.Paule@risc.jku.at) will prompt him to promptly and kindly provide the credentials
for access.

Once you have downloaded the riscergosum-1.2.2.zip file, execute the following code in
Mathematica:

In[1]:= $UserBaseDirectory

This command will output the directory where you should install the package. In my case, as a
Windows user, it has been:

Out[1]= C:\Users\Daniel\AppData\Roaming\Mathematica

Navigate to this folder and extract the contents of the .zip file.

Now, to download the Petkovšek algorithm—also known as the Hyper algorithm—, go to [28].
There, you will see a list of algorithms; click on theHyper link. It will redirect you to another
page displaying the file’s content. Press Ctrl+S (or its equivalent on other operating systems) and
save the file as Hyper.m in the same folder above. It is important to save it with this extension for
Mathematica to recognize it as a package.

If you do not have the desktop version ofMathematica, installing these packages may involve
more steps, but it is addressed in question 91194 of theMathematica Stack Exchange forum.

To load and verify that you have installed the first package correctly, execute:

In[2]:= <<RISC`fastZeil`

Fast Zeilberger Package version 3.61
written by Peter Paule, Markus Schorn, and Axel Riese
Copyright Research Institute for Symbolic Computation (RISC),
Johannes Kepler University, Linz, Austria

To load the second package:

In[3]:= <<Hyper`;
?Hyper

https://github.com/dfcheca/Arndt-Compositions/blob/f89b404498d2ada4e31015ddff058ddade467d7a/codes/zeilberger-and-petkovsek.nb
mailto:Peter.Paule@risc.jku.at
https://www.math.upenn.edu/~wilf/Hyper
https://mathematica.stackexchange.com/a/91203
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Out[3]=

Symbol

Hyper[eqn, y[n]] finds at least one hypergeometric

solution of the homogeneous equation eqn over the field of rational numbers Q

(provided any such solution exists). Hyper[eqn, y[n], Solutions -> All] finds

a generating set (not necessarily linearly independent) for the space of

solutions generated by hypergeometric terms over Q. Hyper[eqn, y[n],

Quadratics -> True] finds solutions over quadratic extensions of Q. Solutions

y[n] are given by their rational representations y[n+1]/y[n].

Warning: The worst-case time complexity of Hyper is exponential

in the degrees of the leading and trailing coefficients of eqn.

Let us prove Corollary 2.13. We define the term F (n, k|i):

In[4]:= F[n_,i_]:=
Binomial[n-i-1,k-1] Binomial[i-1,Floor[k/2]-1](-1)i+Floor[k/2]

Execute Zeilberger’s algorithm to find the recurrence formula.

In[5]:= Zb[F[n,i],i,n]

Out[5]= {-n F[i,n]+(-k+Floor[
k
2
])F[i,1+n]+(2-k+n-Floor[

k
2
])F[i,2+n]==∆i[F[i,n]R[i,n]]}

It is also possible to show the expression R(n, k|i) = G(n, k|i)/F (n, k|i). This how we defined
G(n, k|i) seemingly out of thin air.

In[6]:= show[R]

Out[6]=
(-1+k)(-i+n)(-i+Floor[ k

2])
(1-i-k+n)(2-i-k+n)

Finally, we execute Hyper—Petkovšek—algorithm.

In[7]:= Hyper[n f[n]+(k-Floor[k/2])f[n+1]+(k+Floor[k/2]-n-2)f[n+2]==0,f[n]]

Out[7]= {}

This means there is no hypergeometric solution for b(k)n . If we have run these algorithms with
a sum that does have a hypergeometric solution, Hyper algorithm should output the solution
in the form f[n+1]/f[n]. For example, it is well-known that

∑n
i=0

(
n
i

)
= 2n, and this can be

verified with these algorithms.

In[8]:= Zb[Binomial[n,i],i,n]

Out[8]= {2F[i,n]-F[i,1+n]==∆i[F[i,n]R[i,n]]}

In[9]:= Hyper[2f[n]-f[n+1]==0,f[n]]

Out[9]= {2}
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A.5. Iteration of the Equations from Section 2.5
Filename: interior-iteration.nb

We define the recurrences obtained from equations (2.7) and (2.8). We have added the term C
to keep track of the constant term.

In[1]:= Ae[-1]=Ae;
Ao[-1]=Ao;
Ae[i_Integer?NonNegative][z_,p_,q_,v_]:=

p v z
1-q v z

Ao[z,p,q,1]-
p

q(1-q v z)
Ao[i-1][z,p,q,q v z]

Ao[i_Integer?NonNegative][z_,p_,q_,v_]:=
p2 v z
1-p v z

C+
p v z

1-q v z
Ae[z,p,q,1]+

p
q
(

1
1-p v z

-
1

1-q v z
)Ae[i-1][z,p,q,q v z];

If you enter 1 in the first argument, it will iterate the equations for the first time, and so on.

In[2]:= Ae[1][z,p,q,v]//Expand
Ao[1][z,p,q,v]//Expand

Out[2]= -
C p3 v z2

(1-q v z) (1-p q v z2)
-

p2 v z2 Ae[z,p,q,1]
(1-q v z) (1-q2 v z2)

-
p2 Ae[z,p,q,q2 v z2]

q2 (1-q v z) (1-p q v z2)
+

p2 Ae[z,p,q,q2 v z2]
q2 (1-q v z) (1-q2 v z2)

+
p v z Ao[z,p,q,1]

1-q v z

Out[3]=
C p2 v z
1-p v z

+
p v z Ae[z,p,q,1]

1-q v z
+

p2 v z2 Ao[z,p,q,1]
(1-p v z) (1-q2 v z2)

-
p2 v z2 Ao[z,p,q,1]

(1-q v z) (1-q2 v z2)
-

p2 Ao[z,p,q,q2 v z2]
q2 (1-p v z) (1-q2 v z2)

+
p2 Ao[z,p,q,q2 v z2]

q2 (1-q v z) (1-q2 v z2)

For each function, we need to find: the constant term, the coefficient of Ao(z, p, q|1), and the
coefficient of Ae(z, p, q|1). So, in total, we need to find 6 coefficients, as the other terms cancel
out as we iterate through the functions.

We will demonstrate how to find the constant term ofAo(z, p, q|v), and we hope that guides the
reader to determine the rest. First, note that every two iterations, the constant term increases,
and the powers of z are always odd.

In[4]:= Table[Coefficient[Expand[Ao[k][z,p,q,v]],C],{k,0,5}]

Out[4]= {
p2 v z
1-p v z

,
p2 v z
1-p v z

,
p2 v z
1-p v z

-
p4 v z3

(1-p v z) (1-q2 v z2) (1-p q2 v z3)
+

p4 v z3

(1-q v z) (1-q2 v z2) (1-p q2 v z3)
,
p2 v z
1-p v z

-
p4 v z3

(1-p v z) (1-q2 v z2) (1-p q2 v z3)
+

p4 v z3

(1-q v z) (1-q2 v z2) (1-p q2 v z3)
,
p2 v z
1-p v z

-
p4 v z3

(1-p v z) (1-q2 v z2) (1-p q2 v z3)
+

p4 v z3

(1-q v z) (1-q2 v z2) (1-p q2 v z3)
+

p6 v z5

(1-p v z) (1-q2 v z2) (1-p q2 v z3) (1-q4 v z4) (1-p q4 v z5)
-

p6 v z5

(1-q v z) (1-q2 v z2) (1-p q2 v z3) (1-q4 v z4) (1-p q4 v z5)
-

https://github.com/dfcheca/Arndt-Compositions/blob/f89b404498d2ada4e31015ddff058ddade467d7a/codes/interior-iteration.nb
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p6 v z5

(1-p v z) (1-q2 v z2) (1-q3 v z3) (1-q4 v z4) (1-p q4 v z5)
+

p6 v z5

(1-q v z) (1-q2 v z2) (1-q3 v z3) (1-q4 v z4) (1-p q4 v z5)
,

p2 v z
1-p v z

-
p4 v z3

(1-p v z) (1-q2 v z2) (1-p q2 v z3)
+

p4 v z3

(1-q v z) (1-q2 v z2) (1-p q2 v z3)
+

p6 v z5

(1-p v z) (1-q2 v z2) (1-p q2 v z3) (1-q4 v z4) (1-p q4 v z5)
-

p6 v z5

(1-q v z) (1-q2 v z2) (1-p q2 v z3) (1-q4 v z4) (1-p q4 v z5)
-

p6 v z5

(1-p v z) (1-q2 v z2) (1-q3 v z3) (1-q4 v z4) (1-p q4 v z5)
+

p6 v z5

(1-q v z) (1-q2 v z2) (1-q3 v z3) (1-q4 v z4) (1-p q4 v z5)
}

If we factorize any of these, it does not result in anything pleasant. But if we instead group the
terms for each power of z, that is where the terms begin to follow a pattern, and we can express
the constant coefficient inAo(z, p, q|v) as a sum over the powers of z.

In[5]:= Table[Coefficient[Ao[10][z,p,q,v]//Expand,C z2k+1]//Factor,{k,0,3}]

Out[5]=

-
p2 v

-1 + p v z
, -

p4 (p - q) v2 z

(-1 + p v z) (-1 + q v z) -1 + q2 v z2 -1 + p q2 v z3
,

-
p6 (p - q)2 q2 v3 z4

(-1 + p v z) (-1 + q v z) -1 + q2 v z2 -1 + p q2 v z3 -1 + q3 v z3 -1 + q4 v z4 -1 + p q4 v z5
,

-
p8 (p - q)3 q6 v4 z9

(-1 + p v z) (-1 + q v z) -1 + q2 v z2 -1 + p q2 v z3 -1 + q3 v z3 -1 + q4 v z4 -1 + p q4 v z5 -1 + q5 v z5 -1 + q6 v z6 -1 + p q6 v z7


From here we can deduct the powers of each coefficient and start deducing equations (2.11) and
(2.12) in a similar manner.

A.6. Generating Functions for Interior Points and
Semiperimeter

Filename: interior-gf.nb

These are the generating functions ofTheorem 2.29. The parameter m is the top of each sum.

In[1]:= ααα1[m_][z_,p_,q_]:=
m∑∑∑

n=1

p2 n+1 (q-p)n-1 q(n-1)
2
zn (n+1)

QPochhammer[q2 z2,q2 z2,n-1] Times@@QPochhammer[{q z,p q z2},q2 z2,n]
;

βββ1[m_][z_,p_,q_]:=
m∑∑∑

n=1

p2 n-1 (q-p)n-1 q(n-1)
2
zn (n+1)-1

Times@@QPochhammer[{q2 z2,p q z2},q2 z2,n-1] QPochhammer[q z,q2 z2,n]
;

γγγ1[m_][z_,p_,q_]:=
m∑∑∑

n=1

p2 n (q-p)n-1 q(n-1)
2
zn (n+1)

QPochhammer[p q z2,q2 z2,n-1] QPochhammer[q z,q z,2 n]
;

ααα2[m_][z_,p_,q_]:=
m∑∑∑

n=1

p2 n (q-p)n-1 q(n-1) (n-2) zn2

QPochhammer[p z,q2 z2,n] QPochhammer[q z,q z,2 n-2]
;

βββ2[m_][z_,p_,q_]:=

https://github.com/dfcheca/Arndt-Compositions/blob/f89b404498d2ada4e31015ddff058ddade467d7a/codes/interior-gf.nb
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m∑∑∑
n=1

p2 n (q-p)n qn (n-1) zn (n+2)

QPochhammer[p z,q2 z2,n] QPochhammer[q z,q z,2 n]
;

γγγ2[m_][z_,p_,q_]:=
m∑∑∑
n=1

p2 n-1 (q-p)n-1 q(n-1) (n-2) zn2

QPochhammer[q z,q2 z2,n] Times@@QPochhammer[{p z,q2 z2},q2 z2,n-1]
;

A[m_][z_,p_,q_]:=
Det[{{ααα1,1+βββ1+γγγ1},{ααα2,1+βββ2+γγγ2}}]

Det[{{βββ1,1+γγγ1},{1+βββ2,γγγ2}}]
/. (#→→→#[m][z,p,q]&)/@{ααα1,βββ1,γγγ1,ααα2,βββ2,γγγ2}

From here, we can find the initial terms ofA(z, p, q).

In[2]:= Series[A[10][z,p,q],{z,0,10},{p,0,11},{q,0,10}]//Normal

Out[2]= p2 z+p3 z2+2 p4 z3+3 p5 z4+(4 p6+p5 q) z5+(6 p7+2 p6 q) z6+(9 p8+2 p7 q+2 p6 q2) z7+
(13 p9+3 p8 q+5 p7 q2) z8+(19 p10+5 p9 q+8 p8 q2+2 p7 q3) z9+
(28 p11+7 p10 q+14 p9 q2+5 p8 q3+p7 q4) z10

Likewise, the derivatives to find the first moments.

In[3]:= ∂∂∂qFunctionExpand[A[3][z,1,q]]/. q→→→1//FullSimplify
∂∂∂q,qFunctionExpand[A[3][z,1,q]]/. q→→→1//Apart

Out[3]=
z5 (1+z2-z4-z6+z7)

(1+z) (1+z2) (1+z+z2) (1-2 z+z3)2

Out[4]= 58-
1

240 (-1+z)5
-

1
288 (-1+z)4

-
61

360 (-1+z)3
+

19
1728 (-1+z)2

+
14183

57600 (-1+z)
-18 z+4 z2-

1
192 (1+z)3

+
23

128 (1+z)2
+

49
2304 (1+z)

+
221+28 z

1000 (1+z2)2
+
-1879-119 z
2000 (1+z2)

+
-2+z

72 (1-z+z2)
+

1127-1825 z
10 (-1+z+z2)3

+
288803-322647 z
1100 (-1+z+z2)2

+
25128754-18156363 z
121000 (-1+z+z2)

+
-8-3 z

36 (1+z+z2)2
-
5 (-13+3 z)
108 (1+z+z2)

-

2 (-96-7 z-58 z2+46 z3)
3025 (1+z+z2+z3+z4)



Appendix B
Matrices
B.1. Number of Summands

n\k 1 2 3 4 5 6 7 8 9 10 11 12 13
1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 0 0 0
4 1 1 1 0 0 0 0 0 0 0 0 0 0
5 1 2 2 0 0 0 0 0 0 0 0 0 0
6 1 2 4 1 0 0 0 0 0 0 0 0 0
7 1 3 6 2 1 0 0 0 0 0 0 0 0
8 1 3 9 5 3 0 0 0 0 0 0 0 0
9 1 4 12 8 8 1 0 0 0 0 0 0 0
10 1 4 16 14 16 3 1 0 0 0 0 0 0
11 1 5 20 20 30 9 4 0 0 0 0 0 0
12 1 5 25 30 50 19 13 1 0 0 0 0 0
13 1 6 30 40 80 39 32 4 1 0 0 0 0
14 1 6 36 55 120 69 71 14 5 0 0 0 0
15 1 7 42 70 175 119 140 36 19 1 0 0 0
16 1 7 49 91 245 189 259 85 55 5 1 0 0
17 1 8 56 112 336 294 448 176 140 20 6 0 0
18 1 8 64 140 448 434 742 344 316 60 26 1 0
19 1 9 72 168 588 630 1176 624 660 160 86 6 1
20 1 9 81 204 756 882 1806 1086 1284 376 246 27 7

Table B.1. b(k)n , Arndt compositions of n with k parts.

In[1]:= b[n_,k_]:=Sum[Binomial[n-i-1,k-1]Binomial[-Floor[k/2],-i],{i,Floor[k/2],n-k}];
Table[b[n,k],{n,1,20},{k,1,13}]//MatrixForm
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atricesn\k 1 2 3 4 5 6 7 8 9 10 11 12 13

1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1
3 1 2 2 2 2 2 2 2 2 2 2 2 2
4 1 2 3 3 3 3 3 3 3 3 3 3 3
5 1 3 5 5 5 5 5 5 5 5 5 5 5
6 1 3 7 8 8 8 8 8 8 8 8 8 8
7 1 4 10 12 13 13 13 13 13 13 13 13 13
8 1 4 13 18 21 21 21 21 21 21 21 21 21
9 1 5 17 25 33 34 34 34 34 34 34 34 34
10 1 5 21 35 51 54 55 55 55 55 55 55 55
11 1 6 26 46 76 85 89 89 89 89 89 89 89
12 1 6 31 61 111 130 143 144 144 144 144 144 144
13 1 7 37 77 157 196 228 232 233 233 233 233 233
14 1 7 43 98 218 287 358 372 377 377 377 377 377
15 1 8 50 120 295 414 554 590 609 610 610 610 610
16 1 8 57 148 393 582 841 926 981 986 987 987 987
17 1 9 65 177 513 807 1255 1431 1571 1591 1597 1597 1597
18 1 9 73 213 661 1095 1837 2181 2497 2557 2583 2584 2584
19 1 10 82 250 838 1468 2644 3268 3928 4088 4174 4180 4181
20 1 10 91 295 1051 1933 3739 4825 6109 6485 6731 6758 6765

Table B.2. b(≤k)
n , Arndt compositions of n with at most k parts.

In[1]:= b[n_,k_]:=Sum[Binomial[n-i-1,k-1]Binomial[-Floor[k/2],-i],{i,Floor[k/2],n-k}];
Table[Sum[b[n,i],{i,1,k}],{n,1,20},{k,1,13}]//MatrixForm
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n\k 1 2 3 4 5 6 7 8 9 10 11 12 13
1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0 0 0 0
3 2 1 0 0 0 0 0 0 0 0 0 0 0
4 3 2 1 0 0 0 0 0 0 0 0 0 0
5 5 4 2 0 0 0 0 0 0 0 0 0 0
6 8 7 5 1 0 0 0 0 0 0 0 0 0
7 13 12 9 3 1 0 0 0 0 0 0 0 0
8 21 20 17 8 3 0 0 0 0 0 0 0 0
9 34 33 29 17 9 1 0 0 0 0 0 0 0
10 55 54 50 34 20 4 1 0 0 0 0 0 0
11 89 88 83 63 43 13 4 0 0 0 0 0 0
12 144 143 138 113 83 33 14 1 0 0 0 0 0
13 233 232 226 196 156 76 37 5 1 0 0 0 0
14 377 376 370 334 279 159 90 19 5 0 0 0 0
15 610 609 602 560 490 315 196 56 20 1 0 0 0
16 987 986 979 930 839 594 405 146 61 6 1 0 0
17 1597 1596 1588 1532 1420 1084 790 342 166 26 6 0 0
18 2584 2583 2575 2511 2371 1923 1489 747 403 87 27 1 0
19 4181 4180 4171 4099 3931 3343 2713 1537 913 253 93 7 1
20 6765 6764 6755 6674 6470 5714 4832 3026 1940 656 280 34 7

Table B.3. b(≥k)
n , Arndt compositions of n with at least k parts.

In[1]:= b[n_,k_]:=Sum[Binomial[n-i-1,k-1]Binomial[-Floor[k/2],-i],{i,Floor[k/2],n-k}];
Table[Sum[b[n,i],{i,k,n}],{n,1,20},{k,1,13}]//MatrixForm
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B.2. Size of the Last and the First Summands

n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 2 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 4 2 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 6 3 2 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
8 10 5 3 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
9 16 8 4 3 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
10 26 13 7 4 2 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0
11 42 21 11 6 4 2 1 1 0 0 1 0 0 0 0 0 0 0 0 0
12 68 34 18 10 6 3 2 1 1 0 0 1 0 0 0 0 0 0 0 0
13 110 55 29 16 9 6 3 2 1 1 0 0 1 0 0 0 0 0 0 0
14 178 89 47 26 15 9 5 3 2 1 1 0 0 1 0 0 0 0 0 0
15 288 144 76 42 24 14 9 5 3 2 1 1 0 0 1 0 0 0 0 0
16 466 233 123 68 39 23 14 8 5 3 2 1 1 0 0 1 0 0 0 0
17 754 377 199 110 63 37 22 14 8 5 3 2 1 1 0 0 1 0 0 0
18 1220 610 322 178 102 60 36 22 13 8 5 3 2 1 1 0 0 1 0 0
19 1974 987 521 288 165 97 58 35 22 13 8 5 3 2 1 1 0 0 1 0
20 3194 1597 843 466 267 157 94 57 35 21 13 8 5 3 2 1 1 0 0 1

Table B.4. c(k)n , Arndt compositions of n with last part k.

In[1]:= F[z_]:=
z

1-z-z2
;

c[n_,k_]:=SeriesCoefficient[zk+z2k+1+(zk+2+z2k+1)F[z],{z,0,n}];
Table[c[n,k],{n,1,20},{k,1,20}]//MatrixForm



Size
ofthe

Lastand
the

FirstSum
m
ands

•
59

n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
4 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
5 2 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
6 4 6 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
7 6 9 11 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13 13
8 10 15 18 19 20 20 20 21 21 21 21 21 21 21 21 21 21 21 21 21
9 16 24 28 31 32 33 33 33 34 34 34 34 34 34 34 34 34 34 34 34
10 26 39 46 50 52 53 54 54 54 55 55 55 55 55 55 55 55 55 55 55
11 42 63 74 80 84 86 87 88 88 88 89 89 89 89 89 89 89 89 89 89
12 68 102 120 130 136 139 141 142 143 143 143 144 144 144 144 144 144 144 144 144
13 110 165 194 210 219 225 228 230 231 232 232 232 233 233 233 233 233 233 233 233
14 178 267 314 340 355 364 369 372 374 375 376 376 376 377 377 377 377 377 377 377
15 288 432 508 550 574 588 597 602 605 607 608 609 609 609 610 610 610 610 610 610
16 466 699 822 890 929 952 966 974 979 982 984 985 986 986 986 987 987 987 987 987
17 754 1131 1330 1440 1503 1540 1562 1576 1584 1589 1592 1594 1595 1596 1596 1596 1597 1597 1597 1597
18 1220 1830 2152 2330 2432 2492 2528 2550 2563 2571 2576 2579 2581 2582 2583 2583 2583 2584 2584 2584
19 1974 2961 3482 3770 3935 4032 4090 4125 4147 4160 4168 4173 4176 4178 4179 4180 4180 4180 4181 4181
20 3194 4791 5634 6100 6367 6524 6618 6675 6710 6731 6744 6752 6757 6760 6762 6763 6764 6764 6764 6765

Table B.5. c(≤k)
n , Arndt compositions of n with last part of size at most k.

In[1]:= F[z_]:=
z

1-z-z2
;

c[n_,k_]:=SeriesCoefficient[zk+z2k+1+(zk+2+z2k+1)F[z],{z,0,n}];
Table[Sum[c[n,i],{i,1,k}],{n,1,20},{k,1,20}]//MatrixForm
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n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 5 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 8 4 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 13 7 4 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
8 21 11 6 3 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
9 34 18 10 6 3 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0
10 55 29 16 9 5 3 2 1 1 1 0 0 0 0 0 0 0 0 0 0
11 89 47 26 15 9 5 3 2 1 1 1 0 0 0 0 0 0 0 0 0
12 144 76 42 24 14 8 5 3 2 1 1 1 0 0 0 0 0 0 0 0
13 233 123 68 39 23 14 8 5 3 2 1 1 1 0 0 0 0 0 0 0
14 377 199 110 63 37 22 13 8 5 3 2 1 1 1 0 0 0 0 0 0
15 610 322 178 102 60 36 22 13 8 5 3 2 1 1 1 0 0 0 0 0
16 987 521 288 165 97 58 35 21 13 8 5 3 2 1 1 1 0 0 0 0
17 1597 843 466 267 157 94 57 35 21 13 8 5 3 2 1 1 1 0 0 0
18 2584 1364 754 432 254 152 92 56 34 21 13 8 5 3 2 1 1 1 0 0
19 4181 2207 1220 699 411 246 149 91 56 34 21 13 8 5 3 2 1 1 1 0
20 6765 3571 1974 1131 665 398 241 147 90 55 34 21 13 8 5 3 2 1 1 1

Table B.6. c(≥k)
n , Arndt compositions of n with last part of size at least k.

In[1]:= F[z_]:=
z

1-z-z2
;

c[n_,k_]:=SeriesCoefficient[zk+z2k+1+(zk+2+z2k+1)F[z],{z,0,n}];
Table[Sum[c[n,i],{i,k,n}],{n,1,20},{k,1,20}]//MatrixForm
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n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 1 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 2 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 3 3 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 5 5 4 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0
9 0 8 8 6 5 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0
10 0 13 13 10 7 5 3 2 1 1 0 0 0 0 0 0 0 0 0 0
11 0 21 21 16 11 8 5 3 2 1 1 0 0 0 0 0 0 0 0 0
12 0 34 34 26 18 12 8 5 3 2 1 1 0 0 0 0 0 0 0 0
13 0 55 55 42 29 19 13 8 5 3 2 1 1 0 0 0 0 0 0 0
14 0 89 89 68 47 31 20 13 8 5 3 2 1 1 0 0 0 0 0 0
15 0 144 144 110 76 50 32 21 13 8 5 3 2 1 1 0 0 0 0 0
16 0 233 233 178 123 81 52 33 21 13 8 5 3 2 1 1 0 0 0 0
17 0 377 377 288 199 131 84 53 34 21 13 8 5 3 2 1 1 0 0 0
18 0 610 610 466 322 212 136 86 54 34 21 13 8 5 3 2 1 1 0 0
19 0 987 987 754 521 343 220 139 87 55 34 21 13 8 5 3 2 1 1 0
20 0 1597 1597 1220 843 555 356 225 141 88 55 34 21 13 8 5 3 2 1 1

Table B.7. d(k)n , Arndt compositions of n with first part k.

In[1]:= F[z_]:=
z

1-z-z2
;

d[n_,k_]:=SeriesCoefficient[(zk-1-z2k-1-z2k)F[z],{z,0,n}];
Table[d[n,k],{n,1,20},{k,1,20}]//MatrixForm
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n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
4 0 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
5 0 1 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
6 0 2 4 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
7 0 3 6 9 11 12 13 13 13 13 13 13 13 13 13 13 13 13 13 13
8 0 5 10 14 17 19 20 21 21 21 21 21 21 21 21 21 21 21 21 21
9 0 8 16 22 27 30 32 33 34 34 34 34 34 34 34 34 34 34 34 34
10 0 13 26 36 43 48 51 53 54 55 55 55 55 55 55 55 55 55 55 55
11 0 21 42 58 69 77 82 85 87 88 89 89 89 89 89 89 89 89 89 89
12 0 34 68 94 112 124 132 137 140 142 143 144 144 144 144 144 144 144 144 144
13 0 55 110 152 181 200 213 221 226 229 231 232 233 233 233 233 233 233 233 233
14 0 89 178 246 293 324 344 357 365 370 373 375 376 377 377 377 377 377 377 377
15 0 144 288 398 474 524 556 577 590 598 603 606 608 609 610 610 610 610 610 610
16 0 233 466 644 767 848 900 933 954 967 975 980 983 985 986 987 987 987 987 987
17 0 377 754 1042 1241 1372 1456 1509 1543 1564 1577 1585 1590 1593 1595 1596 1597 1597 1597 1597
18 0 610 1220 1686 2008 2220 2356 2442 2496 2530 2551 2564 2572 2577 2580 2582 2583 2584 2584 2584
19 0 987 1974 2728 3249 3592 3812 3951 4038 4093 4127 4148 4161 4169 4174 4177 4179 4180 4181 4181
20 0 1597 3194 4414 5257 5812 6168 6393 6534 6622 6677 6711 6732 6745 6753 6758 6761 6763 6764 6765

Table B.8. d(≤k)
n , Arndt compositions of n with first part of size at most k.

In[1]:= F[z_]:=
z

1-z-z2
;

d[n_,k_]:=SeriesCoefficient[(zk-1-z2k-1-z2k)F[z],{z,0,n}];
Table[Sum[d[n,i],{i,1,k}],{n,1,20},{k,1,20}]//MatrixForm
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n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 3 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 5 5 4 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 8 8 6 4 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 13 13 10 7 4 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0
8 21 21 16 11 7 4 2 1 0 0 0 0 0 0 0 0 0 0 0 0
9 34 34 26 18 12 7 4 2 1 0 0 0 0 0 0 0 0 0 0 0
10 55 55 42 29 19 12 7 4 2 1 0 0 0 0 0 0 0 0 0 0
11 89 89 68 47 31 20 12 7 4 2 1 0 0 0 0 0 0 0 0 0
12 144 144 110 76 50 32 20 12 7 4 2 1 0 0 0 0 0 0 0 0
13 233 233 178 123 81 52 33 20 12 7 4 2 1 0 0 0 0 0 0 0
14 377 377 288 199 131 84 53 33 20 12 7 4 2 1 0 0 0 0 0 0
15 610 610 466 322 212 136 86 54 33 20 12 7 4 2 1 0 0 0 0 0
16 987 987 754 521 343 220 139 87 54 33 20 12 7 4 2 1 0 0 0 0
17 1597 1597 1220 843 555 356 225 141 88 54 33 20 12 7 4 2 1 0 0 0
18 2584 2584 1974 1364 898 576 364 228 142 88 54 33 20 12 7 4 2 1 0 0
19 4181 4181 3194 2207 1453 932 589 369 230 143 88 54 33 20 12 7 4 2 1 0
20 6765 6765 5168 3571 2351 1508 953 597 372 231 143 88 54 33 20 12 7 4 2 1

Table B.9. d(≥k)
n , Arndt compositions of n with first part of size at least k.

In[1]:= F[z_]:=
z

1-z-z2
;

d[n_,k_]:=SeriesCoefficient[(zk-1-z2k-1-z2k)F[z],{z,0,n}];
Table[Sum[d[n,i],{i,k,n}],{n,1,20},{k,1,20}]//MatrixForm
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B.3. Size of the Largest and the Smallest Summands

n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 1 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 1 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 1 4 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 1 6 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0
9 0 1 8 10 7 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0
10 0 1 11 16 12 7 4 2 1 1 0 0 0 0 0 0 0 0 0 0
11 0 1 15 25 20 13 7 4 2 1 1 0 0 0 0 0 0 0 0 0
12 0 1 20 39 34 22 13 7 4 2 1 1 0 0 0 0 0 0 0 0
13 0 1 27 60 56 38 23 13 7 4 2 1 1 0 0 0 0 0 0 0
14 0 1 36 92 92 65 40 23 13 7 4 2 1 1 0 0 0 0 0 0
15 0 1 48 140 150 110 69 41 23 13 7 4 2 1 1 0 0 0 0 0
16 0 1 64 212 243 185 119 71 41 23 13 7 4 2 1 1 0 0 0 0
17 0 1 85 320 392 309 203 123 72 41 23 13 7 4 2 1 1 0 0 0
18 0 1 113 481 629 514 345 212 125 72 41 23 13 7 4 2 1 1 0 0
19 0 1 150 721 1006 851 583 363 216 126 72 41 23 13 7 4 2 1 1 0
20 0 1 199 1078 1603 1404 981 619 372 218 126 72 41 23 13 7 4 2 1 1

Table B.10. [zn]L(k)(z), Arndt compositions of n whose largest summand is k.

In[1]:= G[z_,k_]:=
z-zk+1

1-z-z2+zk+1
;

g[n_,k_]:=SeriesCoefficient[G[z,k],{z,0,n}];
L[z_,k_]:=G[z,k]-G[z,k-1];
l[n_,k_]:=SeriesCoefficient[L[z,k],{z,0,n}];
Table[l[n,k],{n,1,20},{k,1,20}]//MatrixForm
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n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
4 0 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
5 0 1 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
6 0 1 4 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
7 0 1 5 9 11 12 13 13 13 13 13 13 13 13 13 13 13 13 13 13
8 0 1 7 13 17 19 20 21 21 21 21 21 21 21 21 21 21 21 21 21
9 0 1 9 19 26 30 32 33 34 34 34 34 34 34 34 34 34 34 34 34
10 0 1 12 28 40 47 51 53 54 55 55 55 55 55 55 55 55 55 55 55
11 0 1 16 41 61 74 81 85 87 88 89 89 89 89 89 89 89 89 89 89
12 0 1 21 60 94 116 129 136 140 142 143 144 144 144 144 144 144 144 144 144
13 0 1 28 88 144 182 205 218 225 229 231 232 233 233 233 233 233 233 233 233
14 0 1 37 129 221 286 326 349 362 369 373 375 376 377 377 377 377 377 377 377
15 0 1 49 189 339 449 518 559 582 595 602 606 608 609 610 610 610 610 610 610
16 0 1 65 277 520 705 824 895 936 959 972 979 983 985 986 987 987 987 987 987
17 0 1 86 406 798 1107 1310 1433 1505 1546 1569 1582 1589 1593 1595 1596 1597 1597 1597 1597
18 0 1 114 595 1224 1738 2083 2295 2420 2492 2533 2556 2569 2576 2580 2582 2583 2584 2584 2584
19 0 1 151 872 1878 2729 3312 3675 3891 4017 4089 4130 4153 4166 4173 4177 4179 4180 4181 4181
20 0 1 200 1278 2881 4285 5266 5885 6257 6475 6601 6673 6714 6737 6750 6757 6761 6763 6764 6765

Table B.11. [zn]G(k)(z), Arndt compositions of n whose parts are in {1, . . . , k}.

In[1]:= G[z_,k_]:=
z-zk+1

1-z-z2+zk+1
;

g[n_,k_]:=SeriesCoefficient[G[z,k],{z,0,n}];
Table[g[n,k],{n,1,20},{k,1,20}]//MatrixForm
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n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 3 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 6 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 9 2 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
8 16 3 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
9 26 5 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
10 44 7 2 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
11 73 10 3 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
12 121 15 5 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
13 200 22 6 2 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
14 329 33 9 3 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
15 541 49 11 5 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
16 887 73 16 6 2 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
17 1453 108 21 8 3 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0
18 2376 159 30 10 5 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0
19 3881 234 41 13 6 2 1 1 1 0 0 0 0 0 0 0 0 0 1 0
20 6332 343 58 17 8 3 1 1 1 0 0 0 0 0 0 0 0 0 0 1

Table B.12. [zn]S(k)(z), Arndt compositions of n whose smallest summand is k.

In[1]:= H[z_,k_]:=
zk-zk+2+z2k+1

1-z-z2+z3-z2k+1
;

h[n_,k_]:=SeriesCoefficient[H[z,k],{z,0,n}];
S[z_,k_]:=H[z,k]-H[z,k+1];
s[n_,k_]:=SeriesCoefficient[S[z,k],{z,0,n}];
Table[s[n,k],{n,1,20},{k,1,20}]//MatrixForm
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n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 5 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 8 2 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 13 4 2 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
8 21 5 2 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
9 34 8 3 2 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
10 55 11 4 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
11 89 16 6 3 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
12 144 23 8 3 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
13 233 33 11 5 3 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0
14 377 48 15 6 3 2 1 1 1 1 1 1 1 1 0 0 0 0 0 0
15 610 69 20 9 4 3 2 1 1 1 1 1 1 1 1 0 0 0 0 0
16 987 100 27 11 5 3 2 1 1 1 1 1 1 1 1 1 0 0 0 0
17 1597 144 36 15 7 4 3 2 1 1 1 1 1 1 1 1 1 0 0 0
18 2584 208 49 19 9 4 3 2 1 1 1 1 1 1 1 1 1 1 0 0
19 4181 300 66 25 12 6 4 3 2 1 1 1 1 1 1 1 1 1 1 0
20 6765 433 90 32 15 7 4 3 2 1 1 1 1 1 1 1 1 1 1 1

Table B.13. [zn]H(k)(z), Arndt compositions of n whose parts are in {k, k + 1, . . .}.

In[1]:= H[z_,k_]:=
zk-zk+2+z2k+1

1-z-z2+z3-z2k+1
;

h[n_,k_]:=SeriesCoefficient[H[z,k],{z,0,n}];
Table[h[n,k],{n,1,20},{k,1,20}]//MatrixForm
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B.4. Interior Points and Semiperimeter

To print these tables, first load the functions from Appendix A.6.

n\k 0 1 2 3 4 5 6 7 8 9 10 11
1 1 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0 0 0
3 2 0 0 0 0 0 0 0 0 0 0 0
4 3 0 0 0 0 0 0 0 0 0 0 0
5 4 1 0 0 0 0 0 0 0 0 0 0
6 6 2 0 0 0 0 0 0 0 0 0 0
7 9 2 2 0 0 0 0 0 0 0 0 0
8 13 3 5 0 0 0 0 0 0 0 0 0
9 19 5 8 2 0 0 0 0 0 0 0 0
10 28 7 14 5 1 0 0 0 0 0 0 0
11 41 10 25 8 5 0 0 0 0 0 0 0
12 60 15 42 13 12 2 0 0 0 0 0 0
13 88 22 69 23 23 7 1 0 0 0 0 0
14 129 32 113 39 43 14 7 0 0 0 0 0
15 189 47 183 63 81 25 20 2 0 0 0 0
16 277 69 293 102 147 46 41 10 2 0 0 0
17 406 101 466 165 257 86 80 26 10 0 0 0
18 595 148 737 263 444 155 156 52 29 5 0 0
19 872 217 1159 416 759 270 299 98 70 18 3 0
20 1278 318 1814 656 1279 466 555 188 149 43 18 1

Table B.14. i(k)n , Arndt compositions of n with k interior points in their bar graph.

In[1]:= i[n_,k_]:=SeriesCoefficient[A[5][z,1,q],{z,0,n},{q,0,k}];
Table[i[n,k],{n,1,20},{k,0,11}]//MatrixForm
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n\k 0 1 2 3 4 5 6 7 8 9 10 11
1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1
3 2 2 2 2 2 2 2 2 2 2 2 2
4 3 3 3 3 3 3 3 3 3 3 3 3
5 4 5 5 5 5 5 5 5 5 5 5 5
6 6 8 8 8 8 8 8 8 8 8 8 8
7 9 11 13 13 13 13 13 13 13 13 13 13
8 13 16 21 21 21 21 21 21 21 21 21 21
9 19 24 32 34 34 34 34 34 34 34 34 34
10 28 35 49 54 55 55 55 55 55 55 55 55
11 41 51 76 84 89 89 89 89 89 89 89 89
12 60 75 117 130 142 144 144 144 144 144 144 144
13 88 110 179 202 225 232 233 233 233 233 233 233
14 129 161 274 313 356 370 377 377 377 377 377 377
15 189 236 419 482 563 588 608 610 610 610 610 610
16 277 346 639 741 888 934 975 985 987 987 987 987
17 406 507 973 1138 1395 1481 1561 1587 1597 1597 1597 1597
18 595 743 1480 1743 2187 2342 2498 2550 2579 2584 2584 2584
19 872 1089 2248 2664 3423 3693 3992 4090 4160 4178 4181 4181
20 1278 1596 3410 4066 5345 5811 6366 6554 6703 6746 6764 6765

Table B.15. i(≤k)
n , Arndt compositions of n with at most k interior points in their bar graph.

In[1]:= i[n_,k_]:=SeriesCoefficient[A[5][z,1,q],{z,0,n},{q,0,k}];
MatInt=Table[i[n,k],{n,1,20},{k,0,11}];
Table[Sum[MatInt[[n,m]],{m,1,k}],{n,1,20},{k,1,12}]//MatrixForm
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n\k 0 1 2 3 4 5 6 7 8 9 10 11
1 1 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0 0 0
3 2 0 0 0 0 0 0 0 0 0 0 0
4 3 0 0 0 0 0 0 0 0 0 0 0
5 5 1 0 0 0 0 0 0 0 0 0 0
6 8 2 0 0 0 0 0 0 0 0 0 0
7 13 4 2 0 0 0 0 0 0 0 0 0
8 21 8 5 0 0 0 0 0 0 0 0 0
9 34 15 10 2 0 0 0 0 0 0 0 0
10 55 27 20 6 1 0 0 0 0 0 0 0
11 89 48 38 13 5 0 0 0 0 0 0 0
12 144 84 69 27 14 2 0 0 0 0 0 0
13 233 145 123 54 31 8 1 0 0 0 0 0
14 377 248 216 103 64 21 7 0 0 0 0 0
15 610 421 374 191 128 47 22 2 0 0 0 0
16 987 710 641 348 246 99 53 12 2 0 0 0
17 1597 1191 1090 624 459 202 116 36 10 0 0 0
18 2584 1989 1841 1104 841 397 242 86 34 5 0 0
19 4181 3309 3092 1933 1517 758 488 189 91 21 3 0
20 6765 5487 5169 3355 2699 1420 954 399 211 62 19 1

Table B.16. i(≥k)
n , Arndt compositions of n with at least k interior points in their bar graph.

In[1]:= i[n_,k_]:=SeriesCoefficient[A[5][z,1,q],{z,0,n},{q,0,k}];
MatInt=Table[i[n,k],{n,1,20},{k,0,11}];
Table[Sum[MatInt[[n,m]],{m,k,12}],{n,1,20},{k,1,12}]//MatrixForm
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n\k 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 2 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 2 2 9 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 5 3 13 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 2 8 5 19 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 1 5 14 7 28 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 5 8 25 10 41 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 2 12 13 42 15 60 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 1 7 23 23 69 22 88 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 7 14 43 39 113 32 129 0 0 0 0 0 0
15 0 0 0 0 0 0 0 2 20 25 81 63 183 47 189 0 0 0 0 0
16 0 0 0 0 0 0 0 2 10 41 46 147 102 293 69 277 0 0 0 0
17 0 0 0 0 0 0 0 0 10 26 80 86 257 165 466 101 406 0 0 0
18 0 0 0 0 0 0 0 0 5 29 52 156 155 444 263 737 148 595 0 0
19 0 0 0 0 0 0 0 0 3 18 70 98 299 270 759 416 1159 217 872 0
20 0 0 0 0 0 0 0 0 1 18 43 149 188 555 466 1279 656 1814 318 1278

Table B.17. s(k)n , Arndt compositions of n whose bar graph has semiperimeter k.

In[1]:= ClearAll[s];
s[n_,k_]:=SeriesCoefficient[A[5][z,p,1],{z,0,n},{p,0,k}];
Table[s[n,k],{n,0,20},{k,2,21}]//MatrixForm
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n\k 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
4 0 0 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
5 0 0 0 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
6 0 0 0 0 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
7 0 0 0 0 2 4 13 13 13 13 13 13 13 13 13 13 13 13 13 13
8 0 0 0 0 0 5 8 21 21 21 21 21 21 21 21 21 21 21 21 21
9 0 0 0 0 0 2 10 15 34 34 34 34 34 34 34 34 34 34 34 34
10 0 0 0 0 0 1 6 20 27 55 55 55 55 55 55 55 55 55 55 55
11 0 0 0 0 0 0 5 13 38 48 89 89 89 89 89 89 89 89 89 89
12 0 0 0 0 0 0 2 14 27 69 84 144 144 144 144 144 144 144 144 144
13 0 0 0 0 0 0 1 8 31 54 123 145 233 233 233 233 233 233 233 233
14 0 0 0 0 0 0 0 7 21 64 103 216 248 377 377 377 377 377 377 377
15 0 0 0 0 0 0 0 2 22 47 128 191 374 421 610 610 610 610 610 610
16 0 0 0 0 0 0 0 2 12 53 99 246 348 641 710 987 987 987 987 987
17 0 0 0 0 0 0 0 0 10 36 116 202 459 624 1090 1191 1597 1597 1597 1597
18 0 0 0 0 0 0 0 0 5 34 86 242 397 841 1104 1841 1989 2584 2584 2584
19 0 0 0 0 0 0 0 0 3 21 91 189 488 758 1517 1933 3092 3309 4181 4181
20 0 0 0 0 0 0 0 0 1 19 62 211 399 954 1420 2699 3355 5169 5487 6765

Table B.18. s(≤k)
n , Arndt compositions of n whose bar graph has semiperimeter at most k.

In[1]:= ClearAll[s];
s[n_,k_]:=SeriesCoefficient[A[5][z,p,1],{z,0,n},{p,0,k}];
MatSp=Table[s[n,k],{n,1,20},{k,2,21}];
Table[Sum[MatSp[[n,m]],{m,1,k}],{n,1,20},{k,1,20}]//MatrixForm



InteriorPoints
and

Sem
iperim

eter
•

73

n\k 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 5 5 5 5 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 8 8 8 8 8 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 13 13 13 13 13 11 9 0 0 0 0 0 0 0 0 0 0 0 0 0
8 21 21 21 21 21 21 16 13 0 0 0 0 0 0 0 0 0 0 0 0
9 34 34 34 34 34 34 32 24 19 0 0 0 0 0 0 0 0 0 0 0
10 55 55 55 55 55 55 54 49 35 28 0 0 0 0 0 0 0 0 0 0
11 89 89 89 89 89 89 89 84 76 51 41 0 0 0 0 0 0 0 0 0
12 144 144 144 144 144 144 144 142 130 117 75 60 0 0 0 0 0 0 0 0
13 233 233 233 233 233 233 233 232 225 202 179 110 88 0 0 0 0 0 0 0
14 377 377 377 377 377 377 377 377 370 356 313 274 161 129 0 0 0 0 0 0
15 610 610 610 610 610 610 610 610 608 588 563 482 419 236 189 0 0 0 0 0
16 987 987 987 987 987 987 987 987 985 975 934 888 741 639 346 277 0 0 0 0
17 1597 1597 1597 1597 1597 1597 1597 1597 1597 1587 1561 1481 1395 1138 973 507 406 0 0 0
18 2584 2584 2584 2584 2584 2584 2584 2584 2584 2579 2550 2498 2342 2187 1743 1480 743 595 0 0
19 4181 4181 4181 4181 4181 4181 4181 4181 4181 4178 4160 4090 3992 3693 3423 2664 2248 1089 872 0
20 6765 6765 6765 6765 6765 6765 6765 6765 6765 6764 6746 6703 6554 6366 5811 5345 4066 3410 1596 1278

Table B.19. s(≥k)
n , Arndt compositions of n whose bar graph has semiperimeter at least k.

In[1]:= ClearAll[s];
s[n_,k_]:=SeriesCoefficient[A[5][z,p,1],{z,0,n},{p,0,k}];
MatSp=Table[s[n,k],{n,1,20},{k,2,21}];
Table[Sum[MatSp[[n,m]],{m,k,20}],{n,1,20},{k,1,20}]//MatrixForm
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B.5. k-Arndt Compositions

n\k -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
3 4 4 4 4 4 4 4 4 4 4 3 2 1 1 1 1 1 1 1 1 1
4 8 8 8 8 8 8 8 8 8 7 6 3 2 1 1 1 1 1 1 1 1
5 16 16 16 16 16 16 16 16 15 14 10 5 3 2 1 1 1 1 1 1 1
6 32 32 32 32 32 32 32 31 30 26 19 8 5 3 2 1 1 1 1 1 1
7 64 64 64 64 64 64 63 62 58 50 33 13 7 5 3 2 1 1 1 1 1
8 128 128 128 128 128 127 126 122 114 95 61 21 11 7 5 3 2 1 1 1 1
9 256 256 256 256 255 254 250 242 222 181 108 34 16 10 7 5 3 2 1 1 1
10 512 512 512 511 510 506 498 478 435 345 197 55 25 14 10 7 5 3 2 1 1
11 1024 1024 1023 1022 1018 1010 990 946 849 657 352 89 37 20 13 10 7 5 3 2 1
12 2048 2047 2046 2042 2034 2014 1970 1871 1661 1252 638 144 57 29 18 13 10 7 5 3 2
13 4095 4094 4090 4082 4062 4018 3918 3701 3245 2385 1145 233 85 42 24 17 13 10 7 5 3
14 8190 8186 8178 8158 8114 8014 7795 7321 6345 4544 2069 377 130 61 34 22 17 13 10 7 5
15 16378 16370 16350 16306 16206 15986 15505 14481 12400 8657 3721 610 195 88 47 29 21 17 13 10 7
16 32754 32734 32690 32590 32370 31887 30845 28645 24241 16493 6714 987 297 127 67 39 27 21 17 13 10
17 65502 65458 65358 65138 64654 63605 61357 56661 47380 31422 12087 1597 447 183 93 53 34 26 21 17 13
18 130994 130894 130674 130190 129139 126873 122057 112080 92617 59864 21794 2584 679 264 131 73 45 32 26 21 17
19 261966 261746 261262 260210 257937 253073 242801 221701 181032 114051 39254 4181 1024 381 181 100 59 40 31 26 21
20 523890 523406 522354 520079 515197 504805 482997 438540 353866 217286 70755 6765 1553 550 253 137 80 51 38 31 26

Table B.20. a(k)n , compositions of n whose pairs of summands satisfy x2i−1 ≥ x2i + k.

In[1]:= A[z_,k_]:=If[k≥≥≥0,
z-z3+zk+2

1-z-z2+z3-zk+2
,

z+z2-z-k+3

1-z-2 z2+z-k+3
];

a[n_,k_]:=SeriesCoefficient[A[z,k],{z,0,n}];
Table[a[n,k],{n,1,20},{k,-10,10}]//MatrixForm
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B.6. Absolute Difference Between Pairs of Summands

n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 4 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 8 5 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 16 9 5 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 32 17 9 5 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 64 31 13 9 5 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8 128 57 23 13 9 5 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 256 105 37 19 13 9 5 3 1 1 1 1 1 1 1 1 1 1 1 1 1
10 512 193 65 29 19 13 9 5 3 1 1 1 1 1 1 1 1 1 1 1 1
11 1024 355 105 45 25 19 13 9 5 3 1 1 1 1 1 1 1 1 1 1 1
12 2048 653 179 73 37 25 19 13 9 5 3 1 1 1 1 1 1 1 1 1 1
13 4096 1201 293 115 53 33 25 19 13 9 5 3 1 1 1 1 1 1 1 1 1
14 8192 2209 497 181 83 45 33 25 19 13 9 5 3 1 1 1 1 1 1 1 1
15 16384 4063 821 281 125 63 41 33 25 19 13 9 5 3 1 1 1 1 1 1 1
16 32768 7473 1383 437 193 93 55 41 33 25 19 13 9 5 3 1 1 1 1 1 1
17 65536 13745 2293 683 285 137 73 51 41 33 25 19 13 9 5 3 1 1 1 1 1
18 131072 25281 3849 1069 427 205 105 65 51 41 33 25 19 13 9 5 3 1 1 1 1
19 262144 46499 6401 1677 625 299 149 85 61 51 41 33 25 19 13 9 5 3 1 1 1
20 524288 85525 10723 2625 933 433 219 117 77 61 51 41 33 25 19 13 9 5 3 1 1

Table B.21. r(k)n , compositions of n whose pairs of summands satisfy |x2i−1 − x2i| ≥ k.

In[1]:= R[z_,k_]:=If[k>0,
z-z3+2 zk+2

1-z-z2+z3-2 zk+2
,

z
1-2 z

];
Table[SeriesCoefficient[R[z,k],{z,0,n}],{n,1,20},{k,0,20}]//MatrixForm
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
4 4 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
5 4 12 14 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
6 8 20 28 30 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32
7 8 36 52 60 62 64 64 64 64 64 64 64 64 64 64 64 64 64 64
8 16 64 100 116 124 126 128 128 128 128 128 128 128 128 128 128 128 128 128
9 16 112 188 228 244 252 254 256 256 256 256 256 256 256 256 256 256 256 256
10 32 200 360 444 484 500 508 510 512 512 512 512 512 512 512 512 512 512 512
11 32 352 680 868 956 996 1012 1020 1022 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024
12 64 624 1296 1696 1892 1980 2020 2036 2044 2046 2048 2048 2048 2048 2048 2048 2048 2048 2048
13 64 1104 2456 3312 3740 3940 4028 4068 4084 4092 4094 4096 4096 4096 4096 4096 4096 4096 4096
14 128 1952 4672 6472 7400 7836 8036 8124 8164 8180 8188 8190 8192 8192 8192 8192 8192 8192 8192
15 128 3456 8864 12640 14632 15588 16028 16228 16316 16356 16372 16380 16382 16384 16384 16384 16384 16384 16384
16 256 6112 16848 24696 28944 31008 31972 32412 32612 32700 32740 32756 32764 32766 32768 32768 32768 32768 32768
17 256 10816 31984 48240 57240 61680 63772 64740 65180 65380 65468 65508 65524 65532 65534 65536 65536 65536 65536
18 512 19136 60768 94240 113216 122696 127208 129308 130276 130716 130916 131004 131044 131060 131068 131070 131072 131072 131072
19 512 33856 115392 184096 223912 244064 253736 258276 260380 261348 261788 261988 262076 262116 262132 262140 262142 262144 262144
20 1024 59904 219200 359632 442864 485496 506128 515872 520420 522524 523492 523932 524132 524220 524260 524276 524284 524286 524288

Table B.22. Compositions of n whose pairs of summands satisfy |x2i−1 − x2i| ≤ k.

In[2]:= Table[SeriesCoefficient[
z+z2-2 zk+3

1-z-2 z2+2 zk+3
,{z,0,n}],{n,1,20},{k,0,18}]//MatrixForm
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B.7. Multiplying the Restriction by a Constant

n\a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
4 3 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
5 5 11 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
6 8 20 27 30 31 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32
7 13 37 52 59 62 63 64 64 64 64 64 64 64 64 64 64 64 64 64 64
8 21 68 100 116 123 126 127 128 128 128 128 128 128 128 128 128 128 128 128 128
9 34 125 193 228 244 251 254 255 256 256 256 256 256 256 256 256 256 256 256 256
10 55 230 372 448 484 500 507 510 511 512 512 512 512 512 512 512 512 512 512 512
11 89 423 717 881 960 996 1012 1019 1022 1023 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024
12 144 778 1382 1732 1904 1984 2020 2036 2043 2046 2047 2048 2048 2048 2048 2048 2048 2048 2048 2048
13 233 1431 2664 3405 3777 3952 4032 4068 4084 4091 4094 4095 4096 4096 4096 4096 4096 4096 4096 4096
14 377 2632 5135 6694 7492 7872 8048 8128 8164 8180 8187 8190 8191 8192 8192 8192 8192 8192 8192 8192
15 610 4841 9898 13160 14861 15681 16064 16240 16320 16356 16372 16379 16382 16383 16384 16384 16384 16384 16384 16384
16 987 8904 19079 25872 29478 31236 32064 32448 32624 32704 32740 32756 32763 32766 32767 32768 32768 32768 32768 32768
17 1597 16377 36776 50863 58472 62221 64001 64832 65216 65392 65472 65508 65524 65531 65534 65535 65536 65536 65536 65536
18 2584 30122 70888 99994 115984 123942 127748 129536 130368 130752 130928 131008 131044 131060 131067 131070 131071 131072 131072 131072
19 4181 55403 136641 196583 230064 246888 254989 258817 260608 261440 261824 262000 262080 262116 262132 262139 262142 262143 262144 262144
20 6765 101902 263384 386472 456351 491792 508966 517124 520960 522752 523584 523968 524144 524224 524260 524276 524283 524286 524287 524288

Table B.23. Compositions of n whose pairs of summands satisfy ax2i−1 > x2i.

In[3]:= Table[SeriesCoefficient[
z-za+1

1-2 z+za+2
,{z,0,n}],{n,1,20},{a,1,20}]//MatrixForm
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 4 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 8 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 16 5 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 32 8 4 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 64 13 6 4 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8 128 21 9 5 4 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1
9 256 34 13 7 5 4 3 2 1 1 1 1 1 1 1 1 1 1 1 1
10 512 55 19 10 6 5 4 3 2 1 1 1 1 1 1 1 1 1 1 1
11 1024 89 28 14 8 6 5 4 3 2 1 1 1 1 1 1 1 1 1 1
12 2048 144 41 19 11 7 6 5 4 3 2 1 1 1 1 1 1 1 1 1
13 4096 233 60 26 15 9 7 6 5 4 3 2 1 1 1 1 1 1 1 1
14 8192 377 88 36 20 12 8 7 6 5 4 3 2 1 1 1 1 1 1 1
15 16384 610 129 50 26 16 10 8 7 6 5 4 3 2 1 1 1 1 1 1
16 32768 987 189 69 34 21 13 9 8 7 6 5 4 3 2 1 1 1 1 1
17 65536 1597 277 95 45 27 17 11 9 8 7 6 5 4 3 2 1 1 1 1
18 131072 2584 406 131 60 34 22 14 10 9 8 7 6 5 4 3 2 1 1 1
19 262144 4181 595 181 80 43 28 18 12 10 9 8 7 6 5 4 3 2 1 1
20 524288 6765 872 250 106 55 35 23 15 11 10 9 8 7 6 5 4 3 2 1

Table B.24. Compositions of n whose pairs of summands satisfy x2i−1 > bx2i.

In[4]:= Table[SeriesCoefficient[
z

1-z-zb+1
,{z,0,n}],{n,1,20},{b,0,19}]//MatrixForm
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B.8. k-Block Arndt Compositions

n\k 1 2 3 4 5 6
1 1 1 1 1 1 1
2 2 1 1 1 1 1
3 4 2 2 2 2 2
4 8 3 2 2 2 2
5 16 5 3 3 3 3
6 32 8 4 4 4 4
7 64 13 6 5 5 5
8 128 21 8 6 6 6
9 256 34 13 8 8 8
10 512 55 18 10 10 10
11 1024 89 27 13 12 12
12 2048 144 39 17 15 15
13 4096 233 57 23 18 18
14 8192 377 81 31 22 22
15 16384 610 119 43 27 27
16 32768 987 170 59 33 32
17 65536 1597 247 82 40 38
18 131072 2584 357 113 51 46
19 262144 4181 518 156 63 54
20 524288 6765 748 213 81 64

Table B.25. k-block Arndt Compositions of n.

In[5]:= Table[SeriesCoefficient[Sum[zBinomial[j+1,2]/QPochhammer[z,z,j],{j,1,k}]/
(1-zBinomial[k+1,2]/QPochhammer[z,z,k]),{z,0,n}],{n,1,20},{k,1,6}]//MatrixForm
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