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Preamble

Let us begin by asserting that all structures and changes in nature are
fundamentally discrete or discontinuous. Here we use structure in biology as a
general term to mean an arrangement of parts and hence a structure may be an
organism or even a dismembered organism.

By discrete we mean that the structure has distinct parts. These parts may
of course be interconnected and thereby arranged in some sort of a pattern .
What is more these patterns usually characterise the structure perhaps even more
so than the nature of the parts. An elephant tusk and a Rhinoceros horn are typed
by us as closely allied forms despite the fact that one is of ivory and the other of
hair.

The structure may be changed by either rearranging the interconnections
between its parts , for example by stretching, or it may change by having new
parts( or new connections ) added , as with fission when a single cell splits into
two . However in both cases the total amount of material in the structure
immediately before and after the change is the same. Consequently both of these
changes are basically changes in the arrangement of material.

What are the characteristics of a structure 7 We have described two ; the
arrangement of the constituent parts and the nature of the material in the
constituent parts. Each of these parts may now be considered to be another
structure and so on and we are faced with the hypothesis that our material is
nothing but a hierarchy of patterns. So does a structure have any more substance
than pattern? Why should it ? After all our knowledge of structure comes to us
only through our sensory organs which are essentially pattern processors .

It follows that all structures change discretely in time.Perhaps the only
quantity that might be considered to change continuously in nature is time .
However it makes sense where there are an enormous number of parts , such as
the molecules in a component part , to use a continuous model as an

P

approximation.
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The aphorism of Heracleitus that "Everything flows " might be more aptly
replaced by "Time flows everything else jumps ". ( Actually what he really said
is better translated as " All is flux , nothing is stationary ". )

In what follows an attempt is made, using a minimum amount of
mathematical jargon , to describe some discrete patterns which have only recently
been shown to occur widely in nature . A more detailed treatment may be found
in the references.

It is believed that these patterns have great intrinsic beauty and consequently
are worth studying for their own sake. Furthermore following D'Arcy
Thompson ( ' On Growth and Form '-abridged edition edited by J.T.Bonner
_Cambridge University Press) it is believed that it is primarily because of this
beauty that such patterns occur in nature ; particularly associated with the
emergence of form in plants ( morphogenesis ) .

Because these patterns are coded in binary it also comes as no surprise to
find that they are used in computers ; namely for the storage of data in memory
( hashing codes ).

Self Replication

If we look down in plan view upon a sea shell such as the Nautilus we
often see a curve which can be approximated by a logarithmic spiral. As the
material in the shell is made up of an enormous number of component structures
it is plausible to consider it as continuously distributed so this continuous curve
is an appropriate model. One of the important characteristics of this spiral is
that it is self similar. By this we mean the following . If we take any part of
the curve , rotate it about the origin and then magnify it we will find that it now
corresponds to another part of the curve ( in fact this property can be used to
uniquely define the logarithmic spiral ) . Observing that the straight line and the
circle are particular cases of the logarithmic spiral it is seen that there are no
curves in the plane , other than the logarithmic spiral , with this self similar
property .

This spiral is a very fundamental blueprint for the self replication of
continuous structures in nature as all that has to be encoded in the genes is the
information necessary to reproduce one basic shape . We observe that the genes
are in fact discrete structures themselves and what is more they are arranged on a
helix . Unfortunately we do not have the time to untangle the convoluted delights
of this structure here.
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We now ask the question " when we are concerned with biological discrete
structures what is the discrete blueprint that corresponds to self
replication 7 ".

Well firstly we must guess that it must be some sort of a sequence rather
than a continuous curve and that parts of it must look like other parts .
Furthermore we would hope that the basic code might be simple but simple in an
unexpected way . So off we go to inspect simple discrete models in Nature. We
can hardly expect to see a discrete structure replicating itself exactly otherwise
the number of parts would remain the same. So what we might hope to find is
an evolving structure where the number of parts is increasing as we go from one
generation to the next but there is some sort of similarity in the arrangement of
the parts .

One of the simplest such structures is that concerning the arrangement of
the leaves around the stem of a plant ( Phyllotaxis from the Greek : Phyllon =
leaf, taxis = arrangement ) . Perhaps the most elementary model of such a
process is as follows :

We look down on the stem and regard it as a circle . At each unit of time
we allow a leaf to emerge at a constant angle W from its predecessor and
represent this as a point lying on the circumference. What we seek is the 'best '
angle p which would result in the leaves being 'spread out uniformly ' no matter
how many leaves we place .For example if we knew that we were to place only 5
leaves then the best value for 1 would be 1/5 revolution. But then if we were to
place yet another leaf it would be over the first leaf . We will show that to
minimise the ratio of largest gap between leaves compared to the smallest gap we
make L equal to the golden section . But first we must start with-

THE 2-3 GAP THEOREM

Suppose that at time zero a point which we will call O ( our origin ) , is
placed at some arbitrary position on the circumference of a circle .

At time one unit we place another point, which we call 1, at a clockwise
angle of W from the origin ( or an anti clockwise angle of 1- u ). Then at time
two units we place a third point, which we call 2, at a clockwise angle of |
from point 1 and so on. Hence at time n , point n+1 is placed at a clockwise angle
of u from point n . In this manner at time n we have placed the n+l1 points
0,1,2,...n.

From now on we adopt the convention that the circle has unit
circumference ( and thus the radius is 1/27 ) in which case our angle is most
conveniently measured in terms of revolutions .
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If p is rational that is we have u=p/q where p and q are integers then for
n greater than g-1 we must have coincidence of points . For example if u=1/10
the point 10 would coincide with point 0 . Now the plant has to arrange an
unknown number of leaves in such a way that there is as little overlap as
possible and thus rational angles are to be avoided . Hence from now on we
consider only irrational values of [ ( that is [L cannot be represented as the
ratio of two integers ) and this means that it is impossible for two leaf centres to
coincide no matter how many points are placed .

GOLDEN HOPS

In particular we examine the case where
w=t=1=6-1=(V5-1)2= .618., where s is the golden
section .

That is we place points around a circle of unit circumference at each time
unit so that two successive points in time are at a distance of 618 . revolutions .

The golden section is referred to as ¢ from Phideas the name of the
famous Greek sculptor who used it in the design of sculptures as well as buildings
eg the Parthenon . Alternatively the Greek letter T for cut is often used .

We will restrict our use of T to the positive root of x24+x-1=0.1Itis

readily shown that ¢ = 1.618 .. =(1 + V5 )/2 , which is the positive root of
x2-x -1 =0.¢ can be expressed in terms of the continued fraction
g =1+ 11
I+
1+ i
1+1+...

If we chop off the last terms of this fraction we obtain the chops ( or
convergents )

/1, 1+1/1 = 2/1, 1+1/(1+1/1) = 372, 1+1/(1+1/{1+1/1}) = S/3 ...

It is seen that each chop is a ratio of successive members of the Fibonacci
series 1, 1, 2, 3, 5, 8, 13, . . . which is easily generated by writing the first
two terms 1,1 and then each subsequent term is simply the sum of the preceding
two terms. It is readily demonstrated that the ratio of these successive pairs
approaches ¢ as the number of terms increases . Furthermore if the ratio of one
pair is less than ¢ (say 3/2 ) then the ratio of the next pair (5/3) is greater than
¢ . We also note that 5/3 is closer to ¢ than 372 .

If we consider the difference between @ and any nearest fraction p/q then
it can be shown that , in a certain way , as ¢ increases this difference becomes
greater with ¢ than any other angle . Hence not only is @ irrational but , itis
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more difficult to approximate by rationals than any other number and in this
sense the Golden section may be considered to be the most irrational of all
numbers .

An Example

We will now examine the pattern of gaps formed by two successive points
in distance as we go about the circle

Fig 1 shows the arrangement of points when n = 12 and thus the total
number of points is the Fibonacci number 13 and the angle is
w=1/g =.618 .. ( we note that this gives exactly the same pattern as when
1L = ¢ because whole revolutions are cast away) .

++++++++++ FIG 1 HERE ++++++++++

It is no coincidence that the two points on either side of O that is point 5 on
the clockwise side and point 8 on the other side are each Fibonacci numbers
whose sum is 13, the total number of points .

This is quite general whenever the number of points is a Fibonacci number.
Also there is a simple rule to determine the successor of a point as we go around
the circle in a clockwise direction. We look at the successor to the origin O this is
point 5 . Then we add this to our point and thus obtain its successor if the sum
does not exceed 13.  For example the successor to 2is 2 + 5 = 7 . However
9+5 = 14 which exceeds 13 . In this case we subtract 13 obtaining 1. Hence 1is
the successor to 9. Using this simple rule we proceed to generate SUCCessors as we
go clockwise around the circle thus obtaining the cyclic sequence 0, 5, 10, 2, 7,
12,4,9,1,6,11, 3,8, 0.

Now consider the size of the gaps between these points . By a gap we will
mean the arc between consecutive points on the circle . By enumeration it can be
confirmed that the gaps occur only in two sizes 0.055721 . . and 0.0901699
revolutions.

If we were to then construct the case where the total number of points was
14 we would find three different gap sizes . It might be thought that these are
only particular cases and that if for example we had 500 points then the gap sizes
would range over many values . But this is not so !

It can be shown that whenever the angle is the golden section the two-
gap case always occurs when the total number of points (and hence
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gaps ) is a Fibonacci number. Otherwise there are exactly three
different gap sizes.

Another interesting pattern with the golden section is that the gap sizes are
always a power of 1/¢ . In our example, where the number of points is 13, it is
easily checked that the larger gap is 1/¢5 = 0.0901699 and the smaller gap is
1/66 = 0.055721 . Now F7 = 13 and it is always found that the exponent of the
smaller gap size is always one less than the subscript 7 and the larger gap size is
always two less than this subscript .

Furthermore there are always more large gaps that small . In the case of 13
points there are in fact 5 small and 8 large . What is more 5 and 8 are the two
predecessors to 13 in the Fibonacci sequence ( as well as being the
adjacent points to the origin on our circle ) ! It follows that as the number of
points becomes very large the ratio of the number of large to small gaps
approaches ¢ as does the ratio of the size of the larger gap to the smaller gap .

In the general case where [ is other than the Golden section the
same general result holds -the two gap situation occurs when the total number
of points is equal to the denominator of a convergent ( the above chop obtained
from expressing our angle as a continued fraction ) and the three gap situation
occurs when the total number of points is any other value.

One of the most interesting properties of this golden angle, 1/¢, relates to
the way the points are spread out uniformly . In terms of the original problem of
leaf arrangements the best situation occurs when the largest gap is made as small
as possible or the smallest gap is made as large as possible ; in each case the
overlap of the leaves will be lessened . It can be shown that the golden angle
optimises both of these measures simultaneously .

Thus in the general case , where an unknown number of radiation
collectors in the form of discs are are to be centred around the circumference of
a circle, the golden angle will result in the last placed collector being able to
receive the most radiation whilst the other collectors have the least amount of
overlap.

The two gap result when-the angle is the golden section is
undoubtedly one of the great treasures of the mathematics of nature
as we will now demonstrate.

THE TWO GAP SEQUENCE
From now on we consider only the two-gap situation in which the total
number of gaps is a Fibonacci number. In this case the gaps are either large or
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small and we now ask "what is the pattern of these gap types as we go
around the circle 7 " .

To simplify we label our gaps 1 for large and s for small . Let us now
list the sequence of gap types for the case where the number of points is 13 .
As we are on a circle the number of points is of course equal to the number of
gaps.

Clockwise from the origin, point 0, we start with gap (0,5) which is large
. next is gap(5,10) which is also large; then gap(10,2) which is small, . . . and
then ; gap(8,0 ), our last gap, which is small . Hence our sequence of gap
types 18

lislislsllsls

We will call this the 2-Gap sequence . Immediately we see that the small
gaps always occur singly separating large gaps which sometimes occur singly and
sometimes in pairs .

Now let us list the sequence when we have 8 points

slslisll

As we can see it is an entirely different sequence . Or is it ?

Well the first and last gaps are certainly different types. If we were to
watch these two gaps, then as the total number of points changes from one
Fibonacci number to its successor , this pair switches in type. Thus for 8 terms
the first is type s and the last is type 1 and this pair switches when the number of
points becomes 13.

But what about the other terms ? Look at them and you will see that they
do not change !

Let us write them out again starting with the second term ( that is beginning
the sequence with the gap (5,10) to the left of point 5 ) and finishing with the
second last gap (3,8) . Then add the first term, gap (0,5) followed by the last gap
(8,0) . Alternatively we could simply rearrange our sequence by shifting the first
term gap (0,5) so that it is placed between the last two terms, gap (3,8) and gap
(8,0) .

In this way we obtain as our new sequences

Isllsls] for 8 points and
Islislslislls ,  for 13 points .

As can be seen the subsequence formed from the first 8 terms of the second
sequence is identical to the first sequence ! Furthermore if we write the sequence
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for 5 terms, Islls , it is immediately seen that the sequence for 13 points is
obtained by joining the sequence for 5 points to that for 8 points .

This demonstrates that our new sequence has an invariant pattern where
our angle is the golden section and the number of points is a Fibonacci number .
In terms of our original 2-gap sequence, this means that if the total number of
points is Fibonacci then the second gap is always large the third is always small
and so on .

THE GOLDEN SEQUENCE
We now list the first 55 terms of our new sequence and uncover further
interesting properties
1sl Is (5 ) Isl (8 ) Isl Is (13) Ist Is Isl (21)
Isl Is Ist 1sl Is (34) 1sl 1s Isl Isl Is Isl Is Isl 85). .. G
It is noted that we have interspersed Fibonacci numbers in brackets to
indicate running totals.
We will refer to G , the infinite sequence of characters I and s , as
The Golden Sequence . The transformation from the 2-Gap sequence to the
Golden Sequence is done simply as follows . Remove the first term from the 2-
Gap sequence and insert it between the last two terms of that sequence .
Alternatively we can look at the transformation as follows. Cycle the terms of the
2-Gap sequence so that the last term runs into the first term ( in other words look
at them the way they are arranged on the circle ) . Now start the new sequence
with the second term and then switch the last two terms of this new sequence. In
both cases it is seen that we have generated the first part of G with the same
number of terms as with the 2-Gap sequence .

Bernoulli or Beta sequence
If we now change to numeric values by making the substitutions  1=1 and
s=0, this sequence becomes

1011010110110 . . .. (B)

We will refer to this sequence , consisting of units and zeros , as the
Bernoulli ( or Beta for short ) sequence . It can be shown that the kth term
which we will call B(k) has the value

B(k)= INT{ (k+1)¢ } - INT(k ¢ y-1, k=1,2,.. (*)
where INT (x) is the integer part of x , that is INT (16.8) = 16 and
INT(m) =3.
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This immediately allows us to calculate the nth term of our Golden
Sequence G : if R(k) is 1 this term is large , if zero this term is small .

We also define { x } as the fractional part of x . That is { 16.8 } =.8, and of
course

INT x) + {x}=x

Hence defining x as the position in revolutions measured clockwise from
the origin our problem can be formulated as placing the ( n + 1) th point at the
distance xp where

xn={xn-1+pn}={nuj.

Historical Note

Sequences of this type where ¢ is replaced by a general value [ were
first studied by Johann Bernoulli III ( and hence the name Beta ) who was
the astronomer grandson of the famous mathematician Johann Bernoulli I. As the
calculation of integer parts is very cumbersome arithmetic especially without a
computer he developed these techniques in effect to use the symbolic properties
of G so as to calculate the arithmetic values B(k) and hence INT (k ¢ )

Johann I1I studied sequences generated by ( * ) where ¢ may become any
value whatsoever . It is rather tedious to calculate B(k) directly so he searched
for some sort of a pattern that might help him . He observed in 1772 [ 6a ], but
did not prove that, in such sequences, having calculated the first few terms by
the above integer parts formula (*) , these terms could then be used to generate a
larger number of terms and then this new subsequence could be used to generate
an even larger subsequence and so on . Each time the increase in the number of
terms would itself be increasing which allows us to generate the sequence much
more rapidly rather than with the usual recurrence relations where only the
next term in the sequence is added ( for example with the Fibonaccl sequence we
form the next term as the sum of the last pair of terms ) . The proof for this
result had to wait over a century until 1882 when A . Markov established the
result using continued fractions .

The Generating Rule

This technique applied to the Golden Sequence reduces to the following .
We start with the first two terms of the Bernoulli sequence which we calculate
as follows



5/25/94  Tognetti ,University of Wollongong - Golden Sequence-draft only Page 10

B(1)=INT (2¢ ) - INT(¢ ) -1
= INT(3.236..)-INT(1.61803..)-1=1,
B(2) = INT( 3¢ )- INT(2¢ )-1
— INT( 4.8541 ..)-INT(3.236..)-1 =0.
These as we might hope match with the first two terms of (). Now we
convert them into the first two terms of G obtaining Is .

The third term is got by repeating the first term 1, then from these three
terms sl the succeeding two terms are got by repeating the first two (s ).
From these five terms , 1slls , the next three are obtained by repeating the first
three obtaining eight terms . Then the next five terms are obtained from these
eight terms by repeating the first five thus obtaining thirteen terms , and so on.

In this way we have chanced upon the generating rule for the Golden
Sequence : From now on we will use " thread" to mean an initial subsequence

of G equal in length to a Fibonaccci number .
Starting with any thread of length equal to say Fj ~we can generate a

thread of length Fj4] by simply duplicating the thread made up from our first
Fj-1 terms and adding this to the right of our original thread . This new thread

we will call the stretched thread. This can be checked against G where for
example we can obtain a stretched thread of 55 terms from the thread
consisting of the first 34 terms by repeating the thread made up of the first 21
terms.

Another way of looking at this is to generate a sequence of different
threads as follows. Suppose that the second last thread is of length Fj-1 and the

last is of length Fj , then the next thread of Fj41 terms is got by simply adding
( concatenating ) the second last thread to the right of the last thread . That is
the Fibonacci arithmetic property that the length of the new thread is the sum of
the lengths of the last two threads is carried over to string properties : the new
thread is simply got by placing the last two threads alongside of each other .

As Fjis proportional to ¢ for large values of j , it can be seen that the
sequence is very soon generated at an exponential rate .

That is the increase in the number of terms is about ¢ , as the number of

terms jumps from one Fibonacci number to its successor. This is in accordance
with the well known result that Fj+1/Fj approaches @ as j increases .

Other Patterns
Many patterns , derived from G, also replicate the above sequence ! This
certainly applies if we consider two parts , made up of threads whose lengths are
successive Fibonacci numbers . For example if we look at the pattern of large
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groups 1s1 , which we replace by a single L , and small groups Is which we
replace by a single S, then the new sequence is

LSLLSLSLLSLLS

And as can be seen the resultant pattern is identical to G . Similarly for the
groups Islls and sl we again regenerate our G.

Generalising this it is seen that if we have any thread of length Fj ( which
we will call the original thread ) then as we have already discovered this may
be considered to consist of two parts :the L- part which is a thread of length Fj-1
followed by; a second or S-part which is a thread of length Fj.2. Then we can

replace every term 1 in our original thread by an L-part and every term s in this
original thread by an S-part, thus obtaining a very much stretched thread. This
is the basis for a very fast technique for generating G , which we describe in
detail in the section on the Fibonacci tree.

We should warn against the false implication from this that we can have at
most only two consecutive identical copies of threads in G. For example we see
that there are three consecutive occurrences of the thread Isl starting at the 6th
term and finishing at the 14th. This follows because if we represent this thread by
L and Is by S, then we know that the string LLSL, which always occurs whenever
we find a double LL, can be broken up into LLLsl. As sl cannot be the beginning
of a thread we have also shown that four consecutive copies of any thread are
impossible.

The Length of Runs.

We see that each s occurs singly between runs of 1. Also if we count the
number of I's in each run we will note that there are two different run lengths ,
one of length 1 and the other of length 2 . Thus we obtain another sequence of
digits -  the lengths of runs of I's sequence. Ignoring the first term -

2,1,2,2, ..

By representing the smaller digit by s and the larger by | we get another
new sequence . The remarkable result is that this new sequence is also identical
to G.

The Length between Occurrences of a Double |

As can be checked by inspection the lengths between the first 1 in a double to
the first1in the next double, form the following sequence

53,55 573,523,5, ..

This is yet another sequence which matches with the Golden sequence if we
replace the 5 by an 1 and the 3 by an's.
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We show this by examining the following two subsequences 1 1s 1s 11 and
11sl 1s . Now these are the only two patterns in which successive double I's can
occur. In the first of these the length is 5 and in the second the length is 3.
Furthermore the first is associated with a double occurrence of Is and the second
with a single occurrence of Is. But we know that if we replace Is by L we see that
through the ' length of runs ' result that there is a correspondence between
double and single occurrences of Is as between ] and s in G . Hence the result
follows.

Symmetry.

Another interesting pattern that we find in G is one of symmetry. We
have already noted that as the thread length increases from one Fibonacci
number to its successor the last two terms switch . Now if we remove these last
two terms and form a string ( note that it is no longer a thread ) of length Fj-2
this reduced string is symmetric . Another way of describing this is to say that
this symmetric string is a palindrome that is it reads the same backwards as
forwards. We list some of these symmetric strings, note their lengths and enclose
the central character or characters in bars

l-s-1( 3=5-2 ) Is-l-s1 ( 6=8-2 )Islls-I-sllsl (
11=13-2) Isllslsll -s -1slslls] ( 19=21-2) Is1 1s1 sl 1sl 1sl s-1-s 1sl
Is1 1s 1sl 1sl ( 32=34-2)

1s11s 1sl Isl Is 1sl1s 1sl 1slIs I-s-1 1l Is sl sl sl Isl Is Isl 1sl
(53)

This gives us yet another way of generating G . Knowing where the middle
term is located we simply reflect our string about this term taking care to
distinguish the case where there are two middle terms rather than one . We then
add the pair Is onto the end remembering that the pair switches as we go from
one thread to its successor .

Relation to Beatty's Theorem
We consider the pair of sequences Bj and B) where

B; =INT (r),INT (2r), INT (3r),.

By =INT (t),INT (2t), INT(3t),..

where rand t are irrational numbers each greater than 1 and
1/r+1/t=1.

Beatty's theorem ( see [1] and [6¢]) shows that each integer will show
up in either By or B2 but not in both ( that is the sequences form a partition of
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the positive integers) . Each sequence in the pair is called the complement of the
other .

Now r=¢, andt= g2 | satisfy these conditions as

1/¢ +1/¢2=1,

and hence it follows that B and By are complementary where

B1 ={ 1,3,4,6,8,9,... ) ={x1], X2, X3, .. ),

where xx = { INT(k ¢ ) }
By =1{2,57,10,13, ... } = (Y1, ¥2, ¥3,.- )
where yx = { INT(k 62)}.

As each integer is in either By or By, this gives us an alternative way of
deciding whether the jth term in B is either a unit or zero.

That is

BG)=1,if jisinBy,

=0 ,if jisinisinBp.

Thus for example as 8 is in the first set By , the 8th character of G is an
"1 "and as 13 is in By , the 13th character of G is an s

We also note another interesting pattern in Bj and By - to reveal this
consider the list of integers included in the sets up to and including 10 the fourth
term in B2 . It is noted that 8 and 9 are missing from this list and that 8, the
smaller of these , is the next ( the fifth ) term in By . This pattern always holds .

We see that the difference between the jth terms in B and B2 is always J.
Thus we are able to generate the sets progressively . Start with the terms up to j =
2. As 4 is missing this becomes the next ( the third ) term in B . To this we add
3 to obtain 5 the third term in Bo . 6 is now the missing number, and so must be
the next term in B1. To proceed we must keep a list of the missing terms at each

step adding to this list a number between the newly formed pair of terms in the
sets, and removing the smallest number in the list to become the next term in By

A Truly Beautiful Result

Suppose we convert the Bernoulli sequence ( B) into a binary fraction by
putting a point at the beginning ( do not call it a decimal point as it not in
decimal - the correct name is binary point or in general radix point )

x = .1011010110110 . ... = E 21—1( where xk = INT(kk ¢ )
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From which x is about .709834 .
Davison [ 4a] has shown that the continued fraction for x is
1

1
1 + 1

+
F2+ 1
2F3

That is, the terms of this continued fraction are

ap =0, a;= 1, a2:2F1 ., A= 2Fk'1 .

Be warned that the proof although elegant is not easy . Now why do we
claim that this relationship is beautiful ? The answer is that it allows us to look
upon an infinite sum, involving integer parts as exponents, being transformed
into a continued fraction with Fibonaccci numbers as exponents . What is more
in both cases the base is two.

On The Self Matching of G

The following is based on the article [ 6e ]. Suppose that we form another
sequence from G by simply chopping off the first Fj terms at the beginning .

This new displaced sequence we will call G . When i = 4 , this sequence 1is
Gy =1sl sl Islis] sl 1sT sl 1sT sl Islls] sl sl sl 1s ..

If we compare this displaced sequence with the original sequence G, we will
see that the first three terms match, then we have a double mismatch (as
underlined ) that is the original pair Is is switched into sl in the displaced
sequence. Then the next 6 terms match followed by another double mismatch and
SO on .

Now we list the lengths of the matching runs, before each double mismatch
, to obtain the following sequence 3,6,3,3,6,3,6,3, ..

Yes this is a Golden sequence with I replaced by 3 and s replaced by 6 .
Furthermore the term 3 is simply F5 - 2, and the term 6 is simply Fg- 2 . And
this holds in general .

That is a displacement of Fj terms results in runs of lengths , Fj+1-2,
and Fjyo - 2 . With 1 corresponding to the smaller of this pair we now have a
Golden sequence of run lengths . This tells us that subsequences of G remote
from the origin are similar to the beginning of G, over run lengths which
increase with remoteness .
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Suppose now that the mean length of a run is M then if we evaluate the
mean number of matches in a string of length M + 2 we obtain a measure of the
self similarity of G . This measure for a displacement of Fj terms , can be
shown to have the value 1 - 2/¢ I

This means that if we compare a long subsequence of G, starting at the
term F1j; = 89, with its beginnings , then it will match for over 99% of its
terms .

Hofstadter's Extraction Hypothesis

Suppose that we again form our displaced string from G which we will call

the chop
Ggq = Islsl 1 s11s1sllslslislsllIslslstIslslls. .
G* = Isl *1 * s1*s1Ilslsl sl Isl sl Isl sl Isllsl sl 1sl st ls ..

G = 1Isl 1 s1 s 1lslisl sl 1sl sl 1sl sl Isllsl sl Isl sl s . .

That is in this case we have chopped off the first F4 = 3 terms

Again starting with the first term in G we try to find a match in G4 . If
we are successful we go on to our next term in G and compare this with the next
term in G4 .However if we find a mismatch then we insert an * in G, jump
over that term in G4 and compare with the next term in G4 . In this way we
construct the string G*. It follows that G* s the same as G4 with an *
covering each term that had a mismatch with G . Now construct the string made
up of the elements in G4 matching with an * in G.This we will call the extracted
sequence

for our example this is seen to be slis. .

Now this is found to be G, ; that part of G beginning two back from
where G was chopped to form G4 .

What is more this pattern always holds. No matter where we chop the
extracted string and not just for Fibonacci numbers the extracted string always
corresponds to that part of G beginning two before the chop.

Even more remarkable - this pattern holds for for all Beta sequences and
not just the Golden string. Any chop of the Beta sequence results in the extracted
sequence matching with another chop starting two back from the original chop.

An Interesting Fibonacci Function
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In carrying out our self matching analysis we stumbled upon
uj,k = kFj+1 + [ km ]JFj.

A most interesting function indeed. It can be shown that uj k is the distance
to the kth mismatch pair of terms. Furthermore if we define

Wik =ujik+l - Uik =(1-DKk)IFiq1+ Dk Fisa.

That is whenever bk =1,Wjk = Fit+2, and when bk =0,wWijk= Fit1.

Then Wi 1,Wi2, ....,Wik, .. form another Golden sequence.
Furthermore it is readily shown that with k fixed and 1 varying each of wjk and
uj k satisfy the Fibonacci relationship that each term is the sum of the preceding
two.

Penrose Tiles
Now we explain how G can turn up in Penrose tiles . See reference [ 4 ]
and in more detail [ 5 ].

Fig 2 here ***

These tiles are obtained from the rhomb ( that is a parallelogram with equal
sides ) in fig 2, which has each side of length ¢ and an included angle of 72
degrees . Now place a point on the main diagonal dividing it into two parts; one
of length unity, the other of length ¢ . Join this point to the other two vertices
forming two quadrilaterals ; the one associated with the part of length unity has
an obtuse angle - call this the dart ; the other , associated with the part of length
¢ we call the kite.

In this way we have constructed the two master Penrose tiles which will tile
the plane non periodically - that is any other tile, no matter what the pattern,
can be overlaid by one of these master tiles by a translation and sometimes a
rotation . In the usual regular tiling patterns ( hexagons , triangles or squares )
that we see in most bathrooms a rotation is never necessary . In this case the tile
pattern is called periodic .

These Penrose tiles generate some of the most remarkable tile patterns
imaginable - full of interest and unexpected delights. As one stares at a large
patch of such tiling, more and more relationships between the patterns reveal
themselves. Penrose used the expression " unexpected simplicity " to capture
this experience and we have found this expression to be most useful in assessing
art objects in general.
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The essence of these relationships is that they are all based on the pentagon .
This observation led to the discovery of the first crystals with fivefold symmetry
and also to the discovery of pentagonal patterns in streamlines just before a fluid
becomes turbulent.

Now if each tile is marked in a particular way various interesting curves
are displayed when the tiles are assembled . One of the most delightful of these is
due to the insights of Robert Amman who discovered a way of marking each tile
with straight lines such that the assembled pattern displays systems of parallel
straight lines .

Fig 3 here *#*

Fig 3 shows, how the individual tiles are marked and also, how these
become aligned into such a system. Now if one measures the distances( gaps)
between these lines they are found to be only of two sizes , large or small - and
here is the punchline - the sequence of these gap sizes as one runs across such a

system of parallel lines matches G .

It should be emphasised that Peter Pleasants, now at Macquarie University has been one of the
founding figures in this area of 5-fold symmetry; in fact he invented the term 'quasicrystal’.
His co-authored work [?27?] shows how the Golden Sequence is a consequence of projections
from icosahedral group symmetries in higher dimensions.

THE FIBONACCI TREE, HOFSTADTER and the
GOLDEN THREAD
The following is based on reference 6d.
" If a tree puts forth a new branch after one year, and always rests
for a year, producing another new branch only in the year following ,
and if the same law applies to each branch , - then, in the first year we should
have only the principal shoot , in the second - two branches , in the third - three
, then 5,8,13 " .
So observed the brilliant Polish mathematician, Hugo Steinhaus in that
mathematical treasurehouse " Mathematical Snapshots " ( see reference [8])
from which we have produced Fig 4 .

Figure 4 ** here

This appears to be the first recorded description of a tree with Fibonaccci
properties . Steinhaus observed that the numbers of branches as we go up the
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levels in the tree are the same as the populations in the successive generations of
the Fibonacci rabbits .

Fig 5is a reflection of the tree in Fig 4 showing vertex numbering as first
proposed by Hofstadter [2, pp134-137 ] . We will refer to this as the Fibonacci
Tree . In contrast what is referred to as a Fibonacci Tree by some other
computer scientist is a quite different structure.

Figure 5 ** here

Additionally we have indicated the type of each vertex as " 1" ( for large )
for those vertices of degree 3 and " s " ( for small) for those vertices of degree
2.

There are some real world trees that are roughly approximated by the
Fibonacci tree ( see Stevens [ 9 ] ) at some stages of their growth. However the
main use of the Fibonacci tree is that it is sometimes a useful way of displaying
the Fibonacci relationship when it occurs in other biological and computer
structures.

Firstly we explore the properties of the Hofstadter numbering and then
demonstrate that the sequences of vertex types at every level are golden threads.
We observe that :

1. A tree has a unique chain between any pair of vertices hence we define
the level d of a vertex as the number of edges in the path between that vertex
and the origin vertex which we have numbered 1 . Hence vertices 6,7 and 8 are at
the level 4 and vertex 1 which we have called our origin is at level O .

It is seen that for d > 0, the number of vertices at the level d , is the
Fibonacci number Fq . The total number of vertices in the tree below level d is
Fd1 -

These results easily follow from the Fibonacci rabbit problem , when we
relate type 1 vertices to large rabbits and type s vertices to small ( immature )
rabbits.

2. Hofstadter- Numbering

As with the level-numbering the label on each vertex is increased by unity
as we go from left to right across a level. Additionally we increase the number
by unity, as we go up a level from the rightmost vertex on one level to the left
most vertex on the next level. We start the numbering with the number one for
the origin .
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Thus we number the extreme left most vertex at level d with  Fgy1 +1
and the right most vertex with Fd42 .

In this way for example we number the three vertices at level 4 with 6, 7, 8.

3. Property F - Vertex Generation Rules

A type s vertex at level d is always joined to a type | vertex at level d +1.

A type | vertex at level d is always joined to a pair of vertices at level d
+1, in such a way that the left vertex in the pair is always of type 1, and the
right vertex in the pair is always of type s

These are referred to as generation rules to emphasise that they tell us how
vertices are related between levels .

We can now view each level as a generation and thus we can say that a type 1
vertex in generation d is the father of the pair of sons, Is ,in generation d +1 .
Similarly any type s vertex in generation d is the father of a type | vertex in
generation d + 1.

It is seen that these rules correspond to those for the rabbit problem except
that here the order is important.

It follows from Property F that, across a level, a type s vertex must
occur singly and a type 1 vertex may occur singly or as a double but never in
longer runs.

We can see that each vertex at a given level contributes exactly one type 1
vertex to the level above . That is there are as many type 1 vertices at level
d as there are vertices of both types at level d -1.

At level d > O | of the total of Fq vertices, Fq.] are type 1 and Fq.p are

type s, from which it is seen that the type ] vertices are more numerous than the
type s. Thatis a fraction of Fq.j /Fq are type | vertices and Fy.p /Fq are type
s vertices. As the level d increases these proportions approach ¢ -1 and 2 - ¢,
respectively. That is the ratio of type I to type s vertices at levels high up in the
tree approaches ¢ .

We must be careful not to confuse the successor of a vertex with its son . In
contrast to the father son relation between levels, the successor relation applies
to the sequence, usually within a level, except when the vertex is rightmost. Thus
as we proceed across a level we see that the successor of a type s vertex is
always a type 1 vertex. In contrast it is not clear what type follows a type 1
vertex. All we know is that a double occurrence of a type 11is always followed by
a type s.

G - The Hofstadter Recursive Tree



5/25/94  Tognetti ,University of Wollongong - Golden Sequence-draft only Page 20

We now investigate the properties of the type sequence through the
following recursive representation of a tree which Hofstadter defined in [ 2]

Fig 6 ** here

Henceforth we will refer to this structure as R for recursive. It follows that
the Fibonacci tree is simply , root -- s --R.

The tree R is seen to be made up of a left tree, which is simply a copy of
itself shifted up one level and a right tree which is another copy shifted up two
levels.

This means that we can view the Fibonacci tree as follows . From level 3 on
we can see a left tree, which is simply a copy of the Fibonacci tree above level 1
shifted up one level and a right tree, which is another copy of the Fibonacci tree
above level O shifted up two levels.

It follows that when we observe the sequence of vertex types, at any level
after level 2, in the Fibonacci tree we see a left part which is identical to the
complete sequence of vertex types one level below, together with a right part
which is identical to the complete sequence of vertex types two levels below.
Proceeding in this way we eventually prove that

The type sequence at each level is a Golden thread, that is at
level d we see the thread of length Fq .

It follows that the type sequence at each level simply uncovers more of the
infinite Golden sequence.

Hofstadter observed that the father of the Hofstadter numbered vertex ] is
simply

INT( (j+ 1)/@) ,j> 1. ( Thisis proved in [ 6d ]).

Thus as we go from level d - 1 to level d , the thread is increased in length
by the fraction Fg/ Fq.1 which approaches d high up the tree .
It is also seen that if we are at level d, for d > 3, and we trace ancestors

down the tree to level d =3, which is simply the string "Is", then, all of the
vertices in the leftmost thread of length Fq.1 have the common ancestor "1" and

all of the vertices in the rightmost thread of length Fd.2 have the common

ancestor "s".

This is the basis for the proof of our fast method for generating threads -
supposing we have generated the Fq vertices at level d , then we simply replace

every type 1 vertex by the thread of length Fy.2 , and every type s vertex by
the thread of length F4.2 .



.

5/25/94  Tognetti ,University of Wollongong - Golden Sequence-draft only Page 21

Knowing that ( Fd-1 %2 + ( Fq-2 Y2 = Fp4-3 , it is seen that the fractional
increase in the length of our Golden thread S(Fd ) with this fast technique 1is
F74-3/ Fq , which at the top of the tree approaches ¢d/ g3 = 236..(1.618 . )d

Thus it is seen that any partition of a thread, into two threads
equal in length to successive Fibonacci numbers, generates a stretched
Golden thread, if we replace the longer thread by "I'" and the shorter
by "s".

For example using this fast method with an original thread of length F5 =5
. we see that our stretched thread is of length 22 + 32 = 13 = F7 . Stretching
again we see that 82+52 =89 = Fy] . And again 342 + 552 = 4181 = Fj9 .

We note that the last of these stretch ratios , namely 4181/89 =469, is
very close to .236( 1.618 YT as claimed.

Consider now a fragment of a Golden string of length ] characters
then within this string ( we cannot call it a thread as the number of characters is
not Fibonacci )

a) the number of type | vertices is INT( (j+1)/8).

b) the number of type s vertices is INT { ( [j/d]1+D/p} .

For j Fibonacci these reduce to Fibonacci numbers.

Hofstadter [ 2 ] also observed that if H(n) is the father of the vertex
numbered n then this satisfies the following recurrence relationship

H(n) = 0, n=0,
=n - HH(n-1)), n=1

That is as n = H(H(n-1)) + H(n), the label on a vertex is equal to the sum of
the label of its father together with that of the grandfather of its predecessor.

The Zeckendorf Representation

This is simply the representation of a number as the sum of distinct
Fibonacci numbers . As F; = Fp = 1, for convenience we never use Fi . Thus 16

can be represented F7 + F4 =13 + 3, Fg + F5 + F4 =8+ 5+ 3,
F7+F3+Fy=13+2+1, Fg+Fs+F3+Fy=8+5+ 2+1

The first involves a minimal number of terms, the last involves a maximal
number of terms. There are no other representations for the minimal or
maximal and this holds for all numbers. In other cases there will be several
different representations. Thus the second and third are two different
representations where we use three terms .
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It will be noted that the maximal always ends with an F3 or an F> . Now
write down the maximal Zeckendorf representations for the integers
1,2, 3,4, ... These are Fp, F3, F3+ Fp, F4+ Fp, ... From this it is seen that
the sequence of last terms of each of these representations is FpF3FFoF3 ..

Thus we have the pretty result that this is a Golden sequence in which the 1 1s
replaced by Fy and the s is replaced by F3 .

On the Ancestory of a Male Bee

The Fibonacci tree is also relevant to tracing the antecedents of a honeybee
as we will now show.

There is only a single Queen bee to each hive and she alone is capable of
laying eggs . Before laying these eggs the Queen mates with a single male( who
blissfully expires on completion of the conjugal act ). However the Queen does
not fertilise all eggs used in breeding. There is a very strict gender rule: those she
fertilised always become female and the remaining unfertilised eggs always hatch
into males. That is a male has only one parent, the Queen, whereas a female has
both a mother and the happily deceased father . Thus after some time all progeny
in the hive have the same parents .

With "1" for lady representing the female ( queen ) and "s" representing
the male it is seen that our Fibonacci tree represents the ancestors of a single
bee, placed at vertex 2 if it is a male, or vertex 3 if it is a female. In either case
all the vertices above this bee apply to queens and their consorts. Thus the vertex
generation rules  ( Property F ) represents the bee to parent relationship . But
note that the parent to son relationship for rabbits in this tree has to be reversed
for our bees; a type 1 vertex at level d is now the daughter of the parents l-s at
level d +1, a type s vertex at level d is the parthogenetic(begot without a
father) son of the single mother at level d +1.

We also note the initial bee and its parent or parents all come from the same
hive. All other mothers are queens from different hives. Each male of course
comes from the same hive as its queen.

Thus starting with a single male bee at level 1 we see that level 2
represents the single parent, the queen from the bee's hive . The parents of this
female in level 3 are of course a male and female ( a royal pair from another
hive ) and hence are the grandparents. In this way we se¢ that there are three
ancestors ( grandparents ) in the fourth level, five ancestors in the fifth level
and so on. Of course in the case of the bees the order of the ancestors within a
particular level has no biological significance.

Chaos and Fractals
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It is of some topical interest to note that the mapping

xp ={Xp-1+ W}={nu},

is both chaotic and fractal .

We will offer the following simplistic definition of chaos in terms of what
it is not. A non chaotic process may be characterised as follows. Suppose we
start the process with two points close together and observe their fate as time
increases. As time increases it will be seen that they steadily separate. What 1s
more if we were to start with the points even closer together then this separation
is found to be decreased .

For example consider a current of in which the velocity is small. If we
place two tiny corks initially close together we observed that separate after a
certain time interval . We now repeat the experiment this time halving the initial
distance between the corks and we would find that when we observe the corks
after the same time interval they are even closer together . On the other hand if
the velocity is increased until turbulence results those original points will be
found to separate from each other in a very haphazard way. Halving their initial
separation in this case could result in an even more irregular separation - we are
observing chaos.

Back to our problem and let us look at what happens if we consider two
processes simultaneously . That is we take two initial points Xxo = W and xo' =u
and then iterate the two processes according to the above map ; one with a jump
of p and the other with a jump of . It is found that after a large number of
steps the corresponding points  xp and xp, will appear to be distributed
haphazardly around the circle ( don't forget that the x is measured as a fraction
of a revolution ).

A simplistic definition of a fractal is that it is a shape or pattern made up
of components each of which is but a shrunken copy of the main shape. Consider
the situation where we have placed three points 0, 1, 2 which corresponds to the
two gap sequence sll. Now look at the large gap between points 2 and 1 and
observe what happens as we place extra points around the circle such that another
two fall in this gap.That is if we place another 5 points( 8 in total ) the original
large gap has the points 7 and 4 added forming the sequence of points 2,7,4,1 .
The old large gap is now made up of three new gaps. What is more this new gap
sequence is sll.

That is if we were to stretch this old gap around the circle with the points 2
and 1 coinciding with the origin, then we would see that the other two points( 7
and 4 ) would overlap the points 1 and 2 that is the new sequence in this old gap
is but a shrunken copy of the original three point gap arrangement!
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We have demonstrated that the pattern of new gaps within a large gap, as
we place new points, is an exact copy of the gaps sequence within the full circle
at an earlier stage. It can be shown that this result holds in general with two gap
partitioning ( see Tony van Ravenstein reference [6i] .). So in this way we see
that our Golden hops produce fractal patterns.

Conclusion

As is the logarithmic spiral a blueprint for the replication of continuous
structures , such as occur in sea shells , the Golden threads appears to be a
fundamental and ubiquitous blueprint in nature for the replication of discrete
structures such as occur for example with the placement of leaves around a stem.

Golden threads hide themselves in all sorts of natural structures as well as
in artifacts such as the Penrose tiles and computer storage schemes.

The threads will probably be found associated with any structure where
collectors , whose number is unknown, are to be arranged around a circle, 1n
such a way as to maximise radiation collected by them . This follows because it
can be shown that for large numbers of points, the minimum gap between them
is largest and the maximum gap is smallest when the successive angle of
placement is equal to the golden section .

Because of this association with radiation collection it is not inconceivable
that we might find extra terrestrial evidence of such structures. In that case , on
the basis of its simplicity , it might be appropriate to transmit golden threads as
a dot dash radio signal in the hope that a message of beauty is received from us
instead of our weapons of war.
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Figure ©. The Hofstadter Recursive Tree G.



