This site is supported by donations to The OEIS Foundation.

Platonic solids

From OeisWiki
(Redirected from Tetrahedron)
Jump to: navigation, search


This article page is a stub, please help by expanding it.


The five regular convex polyhedra (3-dimensional regular convex solids, known as the 5 Platonic solids), are

The tetrahedron is self-dual, the cube and the octahedron are duals, and the dodecahedron and icosahedron are duals. (Dual pairs have same number of edges and have vertices corresponding to faces of each other.)

Number of vertices, edges and faces of the 5 Platonic solids:

  • A063723 Number of vertices in the Platonic solids (in the order tetrahedron, cube, octahedron, dodecahedron, icosahedron).
  • A063722 Number of edges in the Platonic solids (in the order tetrahedron, cube, octahedron, dodecahedron, icosahedron).
  • A053016 Number of faces of Platonic solids (in the order tetrahedron, cube, octahedron, dodecahedron, icosahedron).

See also