This site is supported by donations to The OEIS Foundation.
Riffs and Rotes
From OeisWiki
Contents |
Idea
Let
be the
prime, where the positive integer
is called the index of the prime
and the indices are taken in such a way that
Thus the sequence of primes begins as follows:
|
|
The prime factorization of a positive integer
can be written in the following form:
|
where
is the
prime power in the factorization and
is the number of distinct prime factors dividing
The factorization of
is defined as
in accord with the convention that an empty product is equal to
Let
be the set of indices of primes that divide
and let
be the number of times that
divides
Then the prime factorization of
can be written in the following alternative form:
|
For example:
|
|
Each index
and exponent
appearing in the prime factorization of a positive integer
is itself a positive integer, and thus has a prime factorization of its own.
Continuing with the same example, the index
has the factorization
and the index
has the factorization
Taking this information together with previously known factorizations allows the following replacements to be made in the expression above:
|
|
This leads to the following development:
|
|
Continuing to replace every index and exponent with its factorization produces the following development:
|
|
The
's that appear as indices and exponents are formally redundant, conveying no information apart from the places they occupy in the resulting syntactic structure. Leaving them tacit produces the following expression:
|
|
The pattern of indices and exponents illustrated here is called a doubly recursive factorization, or DRF. Applying the same procedure to any positive integer
produces an expression called the DRF of
If
is the set of positive integers,
is the set of DRF expressions, and the mapping defined by the factorization process is denoted
then the doubly recursive factorization of
is denoted
The forms of DRF expressions can be mapped into either one of two classes of graph-theoretical structures, called riffs and rotes, respectively.
is the following digraph:
|
| |
is the following graph:
|
| |
Riffs in Numerical Order
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Rotes in Numerical Order
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Prime Animations
Riffs 1 to 60
|
Rotes 1 to 60
|
Selected Sequences
A061396
- Number of "rooted index-functional forests" (Riffs) on n nodes.
- Number of "rooted odd trees with only exponent symmetries" (Rotes) on 2n+1 nodes.
| ||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||
|
A062504
- Triangle in which k-th row lists natural number values for the collection of riffs with k nodes.
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
A062537
- Nodes in riff (rooted index-functional forest) for n.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
A062860
- Smallest j with n nodes in its riff (rooted index-functional forest).
|
|
|
|
|
|
|
|
|
|
|
|
A109301
- a(n) = rhig(n) = rote height in gammas of n, where the "rote" corresponding to a positive integer n is a graph derived from the primes factorization of n, as illustrated in the comments.
- Example
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Miscellaneous Examples
| ||||||||||||||||||||||||||||||
|
is the following digraph:
is the following graph:

















































































































































































































































