This site is supported by donations to The OEIS Foundation.

N^(1/n)

From OeisWiki
Jump to: navigation, search


This article page is a stub, please help by expanding it.


When the base is equal to the root index we get

which may tentatively be notated n//n, being the inverse operation of n**n (i.e. n^n.)

Formulae

Recurrence relation

Generating function

Differences

Partial sums

Partial alternating sums

Alternating series

The alternating series

gives an oscillating divergent series whose upper limit point is the MRB constant, the lower limit point being the MRB constant - 1.

Partial sums of reciprocals

Sum of reciprocals

See also

Hierarchical list of operations pertaining to numbers [1] [2]

0th iteration
1st iteration
  • Addition: 
    S(S( "a times" (S(n))))
    , the sum
    n  +  a
    , where 
    n
    is the augend and 
    a
    is the addend. (When addition is commutative both are simply called terms.)
  • Subtraction: 
    P(P( "s times" (P(n))))
    , the difference
    n  −  s
    , where 
    n
    is the minuend and 
    s
    is the subtrahend.
2nd iteration
3rd iteration
4th iteration
5th iteration
6th iteration
  • Hexation ( 
    d
    as "degree", 
    b
    as "base", 
    n
    as "variable").
    • Hexa-powers: 
      n ^^^ (n ^^^ ( "d times" (n ^^^ (n))))
      , written 
      n ^^^^ d or n ↑↑↑↑ d
      .
    • Hexa-exponentials: 
      b ^^^ (b ^^^ ( "n times" (b ^^^ (b))))
      , written 
      b ^^^^ n or b ↑↑↑↑ n
      .
  • Hexation inverses
7th iteration
  • Heptation ( 
    d
    as "degree", 
    b
    as "base", 
    n
    as "variable").
    • Hepta-powers: 
      n ^^^^ (n ^^^^ ( "d times" (n ^^^^ (n))))
      , written 
      n ^^^^^ d or n ↑↑↑↑↑ d
      .
    • Hepta-exponentials: 
      b ^^^^ (b ^^^^ ( "n times" (b ^^^^ (b))))
      , written 
      b ^^^^^ n or b ↑↑↑↑↑ n
      .
  • Heptation inverses
8th iteration
  • Octation ( 
    d
    as "degree", 
    b
    as "base", 
    n
    as "variable").
    • Octa-powers: 
      n ^^^^^ (n ^^^^^ ( "d times" (n ^^^^^ (n))))
      , written 
      n ^^^^^^ d or n ↑↑↑↑↑↑ d
      .
    • Octa-exponentials: 
      b ^^^^^ (b ^^^^^ ( "n times" (b ^^^^^ (b))))
      , written 
      b ^^^^^^ n or b ↑↑↑↑↑↑ n
      .
  • Octation inverses

Notes

  1. HyperoperationWikipedia.org.
  2. Grzegorczyk hierarchyWikipedia.org.
  3. There is a lack of consensus on which comes first. Having the multiplier come second makes it consistent with the definitions for exponentiation and higher operations. This is also the convention used with transfinite ordinals: 
    ω  ×  2 := ω  +  ω
    .

Notes