This site is supported by donations to The OEIS Foundation.

CiteW

From OeisWiki

Jump to: navigation, search


Contents

CiteW

About this page

  • This is part of the series of OEIS Wiki pages that list works citing the OEIS.
  • Additions to these pages are welcomed.
  • But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
  • If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
  • Works are arranged in alphabetical order by author's last name.
  • Works with the same set of authors are arranged by date, starting with the oldest.
  • This section lists works in which the first author's name begins with the letter W.
  • The full list of sections is: CiteA, CiteB, CiteC, CiteD, CiteE, CiteF, CiteG, CiteH, CiteI, CiteJ, CiteK, CiteL, CiteM, CiteN, CiteO, CiteP, CiteQ, CiteR, CiteS, CiteT, CiteU, CiteV, CiteW, CiteX, CiteY, CiteZ.
  • For further information, see the main page for Works Citing OEIS.


References

  1. Carl G. Wagner, "Partition Statistics and q-Bell Numbers (q = -1)", J. Integer Sequences, Volume 7, 2004, Article 04.1.1.
  2. S. Wagner, Graph-theoretical enumeration and digital expansions: an analytic approach, Dissertation, Fakult. f. Tech. Math. u. Tech. Physik, Tech. Univ. Graz, Austria, Feb., 2006.
  3. Stacey Wagner, Enumerating Alternating Permutations with One Alternating Descent, DePaul Discoveries: Vol. 2: Iss. 1, Article 2. URL.
  4. STEPHAN WAGNER, ENUMERATION OF HIGHLY BALANCED TREES, PDF
  5. S. Wagner, Asymptotic enumeration of extensional acyclic digraphs, in Proceedings of the SIAM Meeting on Analytic Algorithmics and Combinatorics (ANALCO12); PDF
  6. Stephan Wagner, The Number of Fixed Points of Wilf's Partition Involution, The Electronic Journal of Combinatorics, 20(4) (2013), #P13
  7. S. G. Wagner, An identity for the cycle indices of rooted tree automorphism groups, Elec. J. Combinat., 13 (2006), #R00.
  8. Stan Wagon, Graph Theory Problems from Hexagonal and Traditional Chess, THE COLLEGE MATHEMATICS JOURNAL, VOL. 45, NO. 4, SEPTEMBER 2014 pp. 278-287.
  9. S. S. Wagstaff, Jr., Computing Euclid's primes, Bull. Institute Combin. Applications, 8 (1993), 23-32.
  10. David Wakeham and David R. Wood, On multiplicative Sidon sets, INTEGERS, 13 (2013), #A26.
  11. M. Waldschmidt, Lectures on Multiple Zeta Values (IMSC 2011), PDF
  12. M. Waldschmidt, From highly composite numbers to transcendental number theory, 2013; PDF
  13. M. Waldschmidt, Lecture on the abc conjecture and some of its consequences, Abdus Salam School of Mathematical Sciences (ASSMS), Lahore, 6th World Conference on 21st Century Mathematics 2013; http://www.sms.edu.pk/wc2013.php.
  14. M. Waldschmidt, Diophantine approximation with applications to dynamical systems, Papua New Guinea PNG University of Technology, International Conference on Pure and Applied Mathematics, ICPAM-LAE 2013, November 26-28, 2013; http://www.math.jussieu.fr/~miw/articles/pdf/ProcConfPNG2013.pdf
  15. Michel Waldschmidt, Continued fractions, École de recherche CIMPA-Oujda, Théorie des Nombres et ses Applications, 18 - 29 mai 2015: Oujda (Maroc) (A113011, A073333, A000217, A000290, A000326, A000384, A001110, A001653)
  16. Ian Walker, Explorations in Recursion with John Pell and the Pell Sequence, PDF.
  17. Robert Walker, Similar Sloth Canon Number Sequences
  18. M. Wallner, Lattice Path Combinatorics, Diplomarbeit, Institut für Diskrete Mathematik und Geometrie der Technischen Universität Wien, 2013; http://dmg.tuwien.ac.at/drmota/Thesis_Wallner.pdf
  19. Clayton A. Walvoort, Peg Solitaire on Trees with Diameter Four, Electronic Theses and Dissertations, East Tennessee State University, Paper 1113; http://dc.etsu.edu/etd/1113.
  20. James Wan arXiv:1101.1132 Moments of products of elliptic integrals.
  21. A. Y. Z. Wang, P. Wen, On the partial finite sums of the reciprocals of the Fibonacci numbers, Journal of Inequalities and Applications, 2015; http://www.journalofinequalitiesandapplications.com/content/2015/1/73
  22. Wang, Carol J. Catalan triangle, standard Young words and standard Young tableaux. Ars Combin. 113A (2014), 287-298.
  23. Carol J. Wang, Z. Chen, The parity of the number of permutation tableaux in a fixed shape, Applied Mathematics and Computation, Volume 265, 15 August 2015, Pages 1090–1097.
  24. Wang, Charles Zhao-Chen; Wang, Yi. Total positivity of Catalan triangle. Discrete Math. 338 (2015), no. 4, 566--568. MR3300743
  25. Chao-Jen Wang, Applications of the Goulden-Jackson cluster method to counting Dyck paths by occurrences of subwords, http://people.brandeis.edu/~gessel/homepage/students/wangthesis.pdf.
  26. D. Wang, A. Mazumdar and G. W. Wornell, A Rate-Distortion Theory for Permutation Spaces, 2013; http://www.ece.umn.edu/~arya/papers/rd_isit13.pdf
  27. Victor Y. Wang, On Hilbert 2-class fields and 2-towers of imaginary quadratic number fields, arXiv preprint arXiv:1508.06552, 2015
  28. Wang, Weiping; Wang, Tianming, Matrices related to the Bell polynomials. Linear Algebra Appl. 422 (2007), no. 1, 139-154.
  29. Wang, Weiping; Wang, Tianming Matrices related to the idempotent numbers and the numbers of planted forests. Ars Combin. 98 (2011), 83-96.
  30. Yi Wang and Bao-Xuan Zhu, Proofs of some conjectures on monotonicity of number-theoretic and combinatorial sequences, arXiv preprint arXiv:1303.5595, 2013
  31. Zhilan Wang, Tautological Integrals on Hilbert Schemes of Points on Curves, arXiv preprint arXiv:1506.08405, 2015
  32. Zilong Wang and Guang Gong, New Sequences Design from Weil Representation with Low Two-Dimensional Correlation in Both Time and Phase Shifts (2008) arXiv:0812.4487
  33. Zuoqin Wang, The twisted Mellin transform (2007), arXiv:0706.2642.
  34. Wanless, Ian M., Permanents of matrices of signed ones. Linear Multilinear Algebra 53 (2005), no. 6, 427-433.
  35. I. M. Wanless, A computer enumeration of small latin trades, Australas. J. Combin. 39, (2007) 247-258.
  36. Stefan de Wannemacker, Thomas Laffey and Robert Osburn, On a conjecture of Wilf (2006), arXiv:math/0608085.
  37. D. Watel, M.-A. Weisser, C. Bentz, D. Barth, An FPT algorithm in polynomial space for the directed Steiner tree problem with limited number of diffusing nodes, Information Processing Letters 115 (2015) 275-279.
  38. Wayne State University, College of Engineering, "COE YouTube channel reaches 2,000-view milestone", http://engineering.wayne.edu/news.php?id=7547
  39. R. Webster and G. Williams, On the trail of Reverse Divisors: 1089 and all that follow, Mathematical Spectrum, 45 (2012/2013), 96--102.
  40. A. Weingartner, On the Solutions of sigma(n) = sigma(n+k), Journal of Integer Sequences, Vol. 14 (2011), #11.5.5.
  41. F. V. Weinstein, Notes on Fibonacci partitions, Experimental Mathematics 25:4 (2016), pp. 482-499. arXiv:math/0307150.
  42. Michael Weiss, On the Distribution of Rational Squares, arXiv preprint arXiv:1510.07362, 2015
  43. E. W. Weisstein, CRC Concise Encyclopedia of Mathematics. Boca Raton, FL: CRC Press, 1998. ISBN 0849396409.
  44. E. W. Weisstein's World of Mathematics.
  45. T. Weist, On the Euler characteristic of Kronecker moduli spaces, Arxiv preprint arXiv:1203.2740, 2012
  46. David Wells, Prime Numbers: The Most Mysterious Figures in Math, Wiley, 2005.
  47. Z. Weng, P. M. Djuric, Efficient learning by consensus over regular networks, in Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on, 4-9 May 2014, Pages: 7253 - 7257 INSPEC Accession Number: 14448553 doi:10.1109/ICASSP.2014.6855008
  48. M. Werner, An Algorithmic Approach for the Zarankiewicz Problem, http://tubafun.bplaced.net/public/zarankiewicz_paper_presentation.pdf, 2012.
  49. Andrew West, Bound Optimization for Parallel Quadratic Sieving Using Large Prime Variations (A126726)
  50. Julian West, Sorting twice through a stack, Theoretical Computer Science, Volume 117, Issues 1-2, 30 August 1993, Pages 303-313.
  51. J. West, Permutation trees and the Catalan and Schroeder numbers, Discrete Math., 146: 247-262 (1995).
  52. Bruce W. Westbury, Invariant tensors for the spin representation of so(7) (2006), arXiv:math/0601209.
  53. Manuel Wettstein, Trapezoidal Diagrams, Upward Triangulations, and Prime Catalan Numbers, arXiv: 1602.07235, 2016. ["None of the presented results would have been obtained without the help of the online encyclopedia of integer sequences which gave the crucial hint by recognizing the 3-dimensional Catalan numbers"]
  54. Tad White, Counting free Abelian actions, arXiv:1304.2830
  55. Earl Glen Whitehead Jr., Stirling number identities from chromatic polynomials, Journal of Combinatorial Theory, Series A, Volume 24, Issue 3, May 1978, Pages 314-317.
  56. Ward. O. Whitt, Weirdness in CTMC's, Notes for Course IEOR 6711: Stochastic Models I, http://www.columbia.edu/~ww2040/6711F12/lect1129.pdf, 2012.
  57. M. Whittaker, Topological spaces associated to higher-rank graphs, 2013; http://www.michaelwhittaker.ca/TopologicalRealisations_AustMS2013.pdf
  58. Robin W. Whitty, Rook polynomials on two-dimensional surfaces and graceful labellings of graphs, Discrete Mathematics, Volume 308, Issues 5-6, 28 March 2008, Pages 674-683.
  59. W Wieczorek, A Nowakowski, Grammatical Inference in the Discovery of Generating Functions, in Man–Machine Interactions 4, 2016, 4th International Conference on Man–Machine Interactions, ICMMI 2015 Kocierz Pass, Poland, October 6–9, Pages pp 627-637, Springer 2015; DOI 10.1007/978-3-319-23437-3_54
  60. Thomas Wieder, The number of certain k-combinations of a n-set, Applied Mathematics Electronic Notes, vol. 7 (2007), 45-52.
  61. Thomas Wieder, The number of certain rankings and hierarchies formed from labeled or unlabeled elements and sets, Appl. Math. Sci., vol. 3(55) (2009), 2707-2724.
  62. Thomas Wieder, doi:10.3968/j.pam.1925252820110201.010 Generation of All Possible Multiselections from a Multiset, Progress in Applied Mathematics, 2(1) (2011), 61-66.
  63. Thomas Wieder, The Debye scattering formula in n dimensions, Journal of Mathematical and Computational Science, vol. 2 no. 4 (2012), 1086-1090.
  64. Wikipedia, Dynamic Programming
  65. Wild, Marcel Counting or producing all fixed cardinality transversals. Algorithmica 69 (2014), no. 1, 117-129.
  66. Wildforests, "Cicada", http://wiki.wildforests.co/topic/Cicada, See Footnote 15; visited Dec. 2012.
  67. D. Jacob Wildstrom, doi:10.1016/j.laa.2010.03.028 Dynamic resource location with tropical algebra, Lin. Alg. Applic. (2011) (in press)
  68. D. J. Wildstrom, Structural Qualities and Serial Construction of Tournament Braids, in Bridges 2012: Mathematics, Music, Art, Architecture, Culture; http://bridgesmathart.org/2012/cdrom/proceedings/98/paper_98.pdf
  69. D. J. Wildstrom, Design and serial construction of digraph braids, Journal of Mathematics and the Arts, Volume 9, Issue 1-2, 2015.
  70. Herbert S. Wilf, The Redheffer matrix of a partially ordered set, The Electronic Journal of Combinatorics, Volume 11(2), 2004, R#10.
  71. Herbert S. Wilf, Mathematics: An Experimental Science, 2005, Draft of a chapter for the forthcoming volume "The Princeton Companion to Mathematics," edited by Tim Gowers.
  72. Hugh Williams, R. K. Guy, doi:10.1142/S1793042111004587 Some fourth-order linear divisibility sequences, Intl. J. Number Theory vol. 7 (5) (2011) 1255-1277
  73. H. C. Williams and R. K. Guy, Odd and even linear divisibility sequences of order 4, INTEGERS, 2015, #A33.
  74. N. Williams, On Eliminating Square Paths in a Square Lattice, Master's Thesis, Rice University, 2000.
  75. Ryan Williams, Applying Practice to Theory (2008) arXiv:0811.1305
  76. David W. Wilson, "The Fifth Taxicab Number is 48988659276962496", J. Integer Sequences, Volume 2, 1999, Article 99.1.9.
  77. Mark C. Wilson, Diagonal asymptotics for products of combinatorial classes, http://www.cs.auckland.ac.nz/~mcw/Research/Outputs/Wils2013.pdf.
  78. David Kofoed Wind, CONNECTED GRAPHS WITH FEWEST SPANNING TREES, BACHELOR THESIS, SPRING 2011, http://www.student.dtu.dk/~s082951/publications/thesis.pdf
  79. R. Winkel, An exponential formula for polynomial vector fields II. Lie series, exponential substitution and rooted trees. Adv. Math. 147 (1999), no. 2, 260-303.
  80. M. Winkler, On a stopping time algorithm of the 3n+ 1 function, http://mike-winkler.net/collatz_algorithm.pdf.
  81. Mike Winkler, On the structure and the behaviour of Collatz 3n+ 1 sequences, 2014; http://mikewinkler.co.nf/collatz_structure_2014.pdf; arXiv preprint arXiv:1412.0519, 2014
  82. M. Winkler, New results on the stopping time behaviour of the Collatz 3x+ 1 function, arXiv preprint arXiv:1504.00212, 2015
  83. Joost Winter, QStream: A Suite of Streams, 2013; http://homepages.cwi.nl/~winter/articles/calcotools13.pdf
  84. J. Winter, M. M. Bonsangue and J. J. M. M. Rutten, Context-free coalgebras, 2013; PDF
  85. Yoad Winter and Remko Scha, Plurals, draft chapter for the Wiley-Blackwell Handbook of Contemporary Semantics - second edition, edited by Shalom Lappin and Chris Fox, 2014; http://www.phil.uu.nl/~yoad/papers/WinterSchaPlurals.pdf
  86. H. M. Wiseman and J. Eisert, Nontrivial quantum effects in biology: A skeptical physicists' view (2007), arXiv:0705.1232.
  87. H. A. Witek, G. Moś, C.-P. Choua, Zhang-Zhang Polynomials of Regular 3-and 4-tier Benzenoid Strips, MATCH Commun. Math. Comput. Chem. 73 (2015) 427-442
  88. R. Witula, Ramanujan type trigonometric formulae, DEMONSTRATIO MATHEMATICA, Vol. XLV, No. 4, 2012, pp. 789-796; http://www.mini.pw.edu.pl/~demmath/archive/dm45_4/galleys/3.pdf
  89. R. Witula, P. Lorenc, M. Rozanski, M. Szweda, Sums of the rational powers of roots of cubic polynomials, Zeszyty Naukowe Politechniki Slaskiej, Seria: Matematyka Stosowana z. 4, Nr. kol. 1920, 2014; http://mat.polsl.pl/zn/zeszyty/z4/znps_mat_stos_04_2014_str_017-034.pdf
  90. Roman Wituła and Damian Sota, "Quasi-Fibonacci Numbers of Order 11", J. Integer Sequences, Volume 10, 2007, Article 07.8.5.
  91. Roman Wituła and Damian Sota, "New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7", J. Integer Sequences, Volume 10, 2007, Article 07.5.6.
  92. Roman Wituła, Damian Sota and Adam Warzyski, "Quasi-Fibonacci Numbers of the Seventh Order", J. Integer Sequences, Volume 9, 2006, Article 06.4.3.
  93. I. Wloch, U. Bednarz, D. Bród, A Wloch and M. Wolowiec-Musial, On a new type of distance Fibonacci numbers, Discrete Applied Math., Volume 161, Issues 16-17, November 2013, Pages 2695-2701.
  94. Wen-Jin Woan, "Hankel Matrices and Lattice Paths", J. Integer Sequences, Volume 4, 2001, Article 01.1.2.
  95. Wen-jin Woan, "A Recursive Relation for Weighted Motzkin Sequences", J. Integer Sequences, Volume 8, 2005, Article 05.1.6.
  96. Wen-jin Woan, "Animals And 2-Motzkin Paths", J. Integer Sequences, Volume 8, 2005, Article 05.5.6.
  97. Wen-jin Woan, "A Relation Between Restricted and Unrestricted Weighted Motzkin Paths", J. Integer Sequences, Volume 9, 2006, Article 06.1.7.
  98. Wen-jin Woan and Barbara Tankersley, "Exponential Generating Functions for Trees with Weighted Edges and Labeled Nodes", J. Integer Sequences, Volume 10, 2007, Article 07.8.4.
  99. J. Wodlinger, COSTAS ARRAYS, GOLOMB RULERS AND WAVELENGTH ISOLATION SEQUENCE PAIRS, M.S. Dissertation, Math. Dept., Simon Fraser University, Spring 2012; http://people.math.sfu.ca/~jed/Papers/Jane%20Wodlinger.%20Master's%20Thesis.%202012.pdf.
  100. G. J. Woeginger, Nothing new about equiangular polygons, Amer. Math. Monthly, 120 (2013), 849-850.
  101. Wójtowicz, Marek, Robin's inequality and the Riemann hypothesis. Proc. Japan Acad. Ser. A Math. Sci. 83 (2007), no. 4, 47-49.
  102. WolframAlpha, Timeline of Systematic Data and the Development of Computable Knowledge (see 1973).
  103. Elisabeth Wong, Brittany Baur, Saad Quader and Chun-Hsi Huang, Biological network motif detection: principles and practice, Briefings in Bioinformatics, 2011, doi:10.1093/bib/bbr033.
  104. Sung Sik Woo, Cubic formula and cubic curves, Commun. Korean Math. Soc. 28 (2013), No. 2, pp. 209-224; doi:10.4134/CKMS.2013.28.2.209; PDF
  105. Roger Woodford, "Bounds for the Eventual Positivity of Difference Functions of Partitions into Prime Powers", J. Integer Sequences, Volume 10, 2007, Article 07.1.3.
  106. Chai Wah Wu, Pigeonholes and repunits, Amer. Math. Monthly, 121 (2014), 529-533.
  107. Chai Wah Wu, Graphs whose normalized Laplacian matrices are separable as density matrices in quantum mechanics, arXiv preprint arXiv:1407.5663, 2014
  108. Chai Wah Wu, Meertens Number and Its Variations, IBM Research Report RC25531 (WAT1504-032) April 2015 (A246532)
  109. Chai Wah Wu, On a conjecture regarding primality of numbers constructed from prepending and appending identical digits, arXiv preprint arXiv:1503.08883, 2015
  110. Chai Wah Wu, Counting the number of isosceles triangles in rectangular regular grids, arXiv:1605.00180, 2016.
  111. Chai Wah Wu, <a href="http://arxiv.org/abs/1608.07247">Minimal number of points on a grid forming patterns of blocks</a>, arXiv:1608.07247 [math.CO], 2016
  112. D. Wu, K. Addanki, M. Saers, Freestyle: A Challenge-Response System for Hip Hop Lyrics via Unsupervised Induction of Stochastic Transduction Grammars, in INTERSPEECH 2013, 25-29 August 2013, Lyon, France, pp. 3478-3482; http://www.cse.ust.hk/~dekai/library/WU_Dekai/WuAddankiSaers_Interspeech2013.pdf
  113. Dekai Wu, K. Addanki and M. Saers, Modeling Hip Hop Challenge Response Lyrics as Machine Translation, in Sima'an, K., Forcada, M.L., Grasmick, D., Depraetere, H., Way, A. (eds.) Proceedings of the XIV Machine Translation Summit (Nice, September 2-6, 2013), p. 109-116; http://www.mtsummit2013.info/files/proceedings/main/mt-summit-2013-addanki-et-al.pdf
  114. G. Wu, M. G. Parker, A complementary construction using mutually unbiased bases, arXiv preprint arXiv:1309.0157, 2013 ["It should be noted that the theoretical developments were greatly helped by us first plugging our computational results into the On-Line Encyclopedia of Integer Sequences (OEIS)"]
  115. Tony F. Wu, K. Ganesan, A. Hu, H.-S. P. Wong, S. Wong, S. Mitra, TPAD: Hardware Trojan Prevention and Detection for Trusted Integrated Circuits, arXiv preprint arXiv:1505.02211, 2015
  116. E. Wulcan, Pattern avoidance in involutions (Masters thesis) (ps, pdf).
  117. J. Wuttke, Multiple Bragg reflection by a thick mosaic crystal, Acta Cryst. (2014). A70, 429-440 doi:10.1107/S205327331400802X
  118. B. G. Wybourne, Admissible partitions and the expansion of the square of the Vandermonde determinant in N variables, 2003.
  119. Ed Wynn, Exhaustive generation of Mrs Perkins's quilt square dissectiosn for low orders, arXiv:1308.5420
  120. Ed Wynn, Enumeration of nonisomorphic Hamiltonian cycles on square grid graphs, arXiv preprint arXiv:1402.0545, 2014

About this page

  • This is part of the series of OEIS Wiki pages that list works citing the OEIS.
  • Additions to these pages are welcomed.
  • But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
  • If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
  • Works are arranged in alphabetical order by author's last name.
  • Works with the same set of authors are arranged by date, starting with the oldest.
  • This section lists works in which the first author's name begins with the letter W.
  • The full list of sections is: CiteA, CiteB, CiteC, CiteD, CiteE, CiteF, CiteG, CiteH, CiteI, CiteJ, CiteK, CiteL, CiteM, CiteN, CiteO, CiteP, CiteQ, CiteR, CiteS, CiteT, CiteU, CiteV, CiteW, CiteX, CiteY, CiteZ.
  • For further information, see the main page for Works Citing OEIS.
Retrieved from "http://oeis.org/wiki/CiteW"
Personal tools