This site is supported by donations to The OEIS Foundation.

CiteSl

From OeisWiki

Jump to: navigation, search


Contents

CiteSl

About this page

  • This is part of the series of OEIS Wiki pages that list works citing the OEIS.
  • Additions to these pages are welcomed.
  • But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
  • If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
  • Works are arranged in alphabetical order by author's last name.
  • Works with the same set of authors are arranged by date, starting with the oldest.
  • This section lists works in which the first author's name begins with Sl to Sz.
  • The full list of sections is: A Ba Bi Ca Ci D E F G H I J K L M N O P Q R Sa Sl T U V W X Y Z.
  • For further information, see the main page for Works Citing OEIS.

References

  1. Paul B. Slater, Eigenvalues, Separability and Absolute Separability of Two-Qubit States (2008); arXiv:0805.0267
  2. Paul B. Slater, Formulas for Generalized Two-Qubit Separability Probabilities, arXiv:1609.08561 2016.
  3. Paul B. Slater, Hypergeometric/Difference-Equation-Based Separability Probability Formulas and Their Asymptotics for Generalized Two-Qubit States Endowed with Random Induced Measure, preprint arXiv:1504.04555, 2015. (A004523, A232007)
  4. Peter J. Slater, It Is All Labeling, In: Gera R., Hedetniemi S., Larson C. (eds) Graph Theory. Problem Books in Mathematics. Springer, 2016, doi:10.1007/978-3-319-31940-7_6
  5. Michael C. Slattery, Groups with at most twelve subgroups, arXiv preprint arXiv:1607.01834, 2016
  6. Richard M. Slevinsky, On the use of Hahn's asymptotic formula and stabilized recurrence for a fast, simple, and stable Chebyshev-Jacobi transform, arXiv preprint arXiv:1602.02618, 2016
  7. Arkadii Slinko, Algebra for Applications: Cryptography, Secret Sharing, Error-Correcting, Fingerprinting, Compression, Springer 2015.
  8. N. J. A. Sloane, The Sphere Packing Problem, Proceedings Internat. Congress Math. Berlin 1998, Documenta Mathematika, III (1998), pp. 387-396. (postscript, pdf)
  9. N. J. A. Sloane, My Favorite Integer Sequences, in Sequences and their Applications (Proceedings of SETA '98), C. Ding, T. Helleseth and H. Niederreiter (editors), Springer-Verlag, London, 1999, pp. 103-130.
  10. N. J. A. Sloane, On Single-Deletion Correcting Codes, in K. T. Arasu and A. Seress, eds., Codes and Designs, Ohio State University, May 2000 (Ray-Chaudhuri Festschrift), Walter de Gruyter, Berlin, 2002, pp. 273-291.
  11. N. J. A. Sloane, The Sphere-Packing Problem (2002), arXiv:math/0207256.
  12. N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences (2003), arXiv:math/0312448; Notices Amer. Math. Soc., 50 (September 2003), pp. 912-915.
  13. N. J. A. Sloane, arXiv:0912.2394 Seven Staggering Sequences.
  14. N. J. A. Sloane, Gleason's theorem on self-dual codes and its generalizations (talk given at Conference on Algebraic Combinatorics in honor of Eiichi Bannai, Sendai, Japan, June 2006).
  15. N. J. A. Sloane, Eight Hateful Sequences, arXiv:0805.2128 (2008)
  16. N. J. A. Sloane, 2178 And All That, http://NeilSloane.com/doc/selma.pdf
  17. N. J. A. Sloane, 2178 And All That, Video of talk given in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Oct. 10 2013: <a href="https://vimeo.com/76725343">Part 1</a>, <a href="https://vimeo.com/77255410">Part 2</a>.
  18. N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168, 2015
  19. N. J. A. Sloane and Parthasarathy Nambi, Integer Sequences Related to Chemistry, [pdf], Poster presented at the Amer. Chem. Soc. National Meeting, San Francisco, Fall 2006.
  20. N. J. A. Sloane and J. A. Sellers, arXiv:math.CO/0312418 On non-squashing partitions], Discrete Math., 294 (2005), no. 3, 259-274.
  21. N. J. A. Sloane and Thomas Wieder, arXiv:math.CO/0307064 The Number of Hierarchical Orderings], arXiv:math.CO/0307064
  22. N. J. A. Sloane and Thomas Wieder, doi:10.1007/s11083-004-9460-9 The Number of Hierarchical Orderings, Order 21 (2004), no. 1, 83-89.
  23. Slomczynska, Katarzyna Free spectra of linear equivalential algebras. J. Symbolic Logic 70 (2005), no. 4, 1341-1358.
  24. Michael Small, C.K. Tse, David M. Walker, Super-spreaders and the rate of transmission of the SARS virus, Physica D: Nonlinear Phenomena, Volume 215, Issue 2, 15 March 2006, Pages 146-158.
  25. F. Smarandache, arXiv:math.GM/0010137 Another Set of Sequences, Sub-Sequences and Sequences of Sequences, Partially published in "Only Problems, Not Solutions!", by Florentin Smarandache, Xiquan Publ. Hse., Phoenix, 1991.
  26. F. Smarandache, arXiv:math.GM/0010132 Considerations on New Functions in Number Theory, Partially inlcuded in the book "Noi Functii in Teoria Numerelor", by Florentin Smarandache, University of Kishinev Press, 120 p., 1999.
  27. F. Smarandache, arXiv:math.GM/0010125 A Set of Sequences in Number Theory], Presented to the Pedagogical High School Student Conference in Craiova, 1972. "Collected Papers", Vol. II, book by Florentin Smarandache, University of Kishinev Press, Kishinev, 200 p., 1997.
  28. F. Smarandache, arXiv:math.GM/0010151 G Add-On, Digital, Sieve, General Periodical and Non-Arithmetic Sequences.
  29. Florentin Smarandache, Numerology (2000), arXiv:math.GM/0010132.
  30. Florentin Smarandache, Sequences of Numbers Involved in Unsolved Problems (2006), arXiv:math.GM/0604019.
  31. F. Smarandache, Generalization and alternatives of Kaprekar's routine, arXiv:1005.3235
  32. Florentin Smarandache, Jean Dezert, An Introduction to the DSm Theory for the Combination of Paradoxical, Uncertain and Imprecise Sources of Information (2006), arXiv:cs/0608002.
  33. Florentin Smarandache, Jean Dezert, The Combination of Paradoxical, Uncertain and Imprecise Sources of Information based on DSmT and Neutro-Fuzzy Inference, arXiv:cs/0412091 (2004)
  34. Jason P. Smith, A Formula for the Mobius function of the Permutation Poset Based on a Topological Decomposition, arXiv preprint arXiv:1506.04406, 2015
  35. K. W. Smith, KWSnet Mathematics Index, 2015; http://www.kwsnet.com/science-mathematics.html
  36. Barry R. Smith, Reducing quadratic forms by kneading sequences, J. Int. Seq. 17 (2014) 14.11.8.
  37. R. Smith and V. Vatter, A stack and a pop stack in series, arXiv preprint arXiv:1303.1395, 2013
  38. V. N. Smith and L. Shapiro, Catalan numbers, Pascal's triangle and mutators, Congressus Numerant., 205 (2010), 187-197.
  39. C. Smyth, The terms in Lucas sequences divisible by their indices, J. Int. Seq. 13 (2010) 10.2.4
  40. Snellman, Jan, Standard paths in another composition poset. Electron. J. Combin. 11 (2004), no. 1, Research Paper 76, 8 pp.
  41. Jan Snellman, Digraphs with a fixed number of edges and vertices, having a maximal number of walks of length 2 (2008); arXiv:0804.4655
  42. Jan Snellman and Michael Paulsen, "Enumeration of Concave Integer Partitions", J. Integer Sequences, Volume 7, 2004, Article 04.1.3.
  43. Marie A. Snipes, LA Ward, Harmonic measure distributions of planar domains: a survey, The Journal of Analysis, December 2016, Volume 24, Issue 2, pp 293–330.
  44. Aaron Snook, Augmented Integer Linear Recurrences, http://www.cs.cmu.edu/afs/cs/user/mjs/ftp/thesis-program/2012/theses/snook.pdf, 2012.
  45. D. R. Snow, Problems and Remarks, 18th International Symposium on Functional Equations, 1980, Remark 18. (ps, pdf)
  46. E. V. K. Sobolev, A survey of the cell-growth problem and some its variations, preprint, Mar. 2001.
  47. Joram Soch, Expressing the Indefinite Integral of the Standard Normal Probability Density Function, arXiv preprint arXiv:1512.04858, 2015
  48. Edwin Soedarmadji, Latin hypercubes and MDS codes, Discrete Mathematics, Volume 306, Issue 12, 28 June 2006, Pages 1232-1239.
  49. Anthony Sofo, Fibonacci and Some of His Relations
  50. A. D. Sokal, The leading root of the partial theta function, arXiv:1106.1003, 2011.
  51. Patrick Sole and Michel Planat, THE ROBIN INEQUALITY FOR 7-FREE INTEGERS, INTEGERS, 2011, #A65; http://www.emis.de/journals/INTEGERS/papers/l65/l65.pdf
  52. Allan I. Solomon, Gerard Duchamp, Pawel Blasiak et al., Normal Order: Combinatorial Graphs (2004), arXiv:quant-ph/0402082.
  53. A. I. Solomon, C.-L. Ho and G. H. E. Duchamp, Degrees of entanglement for multipartite systems, Arxiv preprint arXiv:1205.4958, 2012
  54. N. Solomon, S. Solomon, A natural extesion of Catalan numbers, JIS 11 (2008) 08.3.5.
  55. Liam Solus, Simplices for Numeral Systems, arXiv:1706.00480 [math.CO], 2017.
  56. Steven E. Sommars and Tim Sommars, "The Number of Triangles Formed by Intersecting Diagonals of a Regular Polygon", J. Integer Sequences, Volume 1, 1998, Article 98.1.5.
  57. Michael Somos, A Multisection of q-Series, http://cis.csuohio.edu/~somos/multiq.pdf (A007325, A108483, A058531)
  58. Michael Somos, A Remarkable eta-product Identity, http://cis.csuohio.edu/~somos/retaprod.html (A143751, A058728)
  59. Jonathan Sondow, New Vacca-Type Rational Series for Euler's Constant and Its "Alternating" Analog ln(4/Pi) (2005), arXiv:math.NT/0508042.
  60. Sondow, Jonathan, A geometric proof that e is irrational and a new measure of its irrationality. Amer. Math. Monthly 113 (2006), no. 7, 637-641.
  61. Jonathan Sondow, Which Partial Sums of the Taylor Series for e are Convergents to e? (and a Link to the Primes 2, 5, 13, 37, 463, ...) with an Appendix by Kyle Schalm (2007), arXiv:0709.0671.
  62. Jonathan Sondow, Ramanujan primes and Bertrand's postulate, Amer. Math. Monthly, 116 (2009), 630-635.
  63. Sondow, Jonathan; and Hadjicostas, Petros, The generalized-Euler-constant function gamma(z) and a generalization of Somos's quadratic recurrence constant. J. Math. Anal. Appl. 332 (2007), no. 1, 292-314.
  64. J. Sondow and K. MacMillan, Primary pseudoperfect numbers, arithmetic progressions, and the Erdős-Moser equation, Amer. Math. Monthly, 124 (2017)232-240. doi:10.4169/amer.math.monthly.124.3.232
  65. J. Sondow, J. W. Nicholson and T. D. Noe, Ramanujan Primes: Bounds, Runs, Twins, and Gaps, Arxiv preprint arXiv:1105.2249, 2011. J. Integer Seq. 14 (2011) Article 11.6.2.
  66. J. Sondow, E. Tsukerman, The p-adic Order of Power Sums, the Erdos-Moser Equation, and Bernoulli Numbers, arXiv preprint arXiv:1401.0322, 2014
  67. H.-Y. Song and J. B. Lee, On (n,k)-sequences, Discrete Appl. Math. 105, No.1-3, 183-192 (2000).
  68. Eric Sopena, i-Mark: A new subtraction division game, arXiv:1509.04199, 2015
  69. Henrik Kragh Sørensen, “The End of Proof”? The Integration of Different Mathematical Cultures as Experimental Mathematics Comes of Age, in Mathematical Cultures, pp 139-160 (2016); doi:10.1007/978-3-319-28582-5_9
  70. J. Sorenson, J. Webster, Strong pseudoprimes to twelve prime bases, arXiv:1509.00864. See first page.
  71. Soulé, Christophe (13 Feb 2008). "Le triangle de Pascal et ses propriétés". 
  72. Richard Southwell and Jianwei Huang, Complex Networks from Simple Rewrite Systems, Arxiv preprint arXiv:1205.0596, 2012
  73. C. A. Souza-Filho, A. F. Macedo-Junior, A. M. S. Macedo, A hypergeometric generating function approach to charge counting statistics in ballistic chaotic cavities, J. Phys. A: Math. Theor. 47 (2014); 105102 doi:10.1088/1751-8113/47/10/105102.
  74. S. Spasovski and A. M. Bogdanova, Optimization of the Polynomial Greedy Solution for the Set Covering Problem, 2013, 10th Conference for Informatics and Information Technology (CIIT 2013), PDF
  75. Sam E. Speed, "The Integer Sequence A002620 and Upper Antagonistic Functions", J. Integer Sequences, Volume 6, 2003, Article 03.1.4.
  76. Wolfram Sperber, Mathematical Research Data and Information Services, In: Greuel GM., Koch T., Paule P., Sommese A. (eds) Mathematical Software – ICMS 2016. ICMS 2016. Lecture Notes in Computer Science, vol 9725. Springer; doi:10.1007/978-3-319-42432-3_54
  77. Lukas Spiegelhofer and Michael Wallner, Divisibility of binomial coefficients by powers of primes, arXiv preprint arXiv:1604.07089, 2016
  78. Lukas Spiegelhofer and Michael Wallner, The Tu--Deng Conjecture holds almost surely, arXiv:1707.07945 [math.CO], July 2017.
  79. Spiegelhofer, Lukas; Wallner, Michael (September 2017). "Divisibility of binomial coefficients by powers of two". arΧiv:1710.10884. 
  80. Michael Z. Spivey, Combinatorial sums and finite differences, Discrete Mathematics, Volume 307, Issue 24, 28 November 2007, Pages 3130-3146.
  81. M. Z. Spivey, A generalized recurrence for Bell Numbers, JIS 11 (2008) 08.2.5
  82. Michael Z. Spivey, Staircase rook polynomials and Cayley's game of Mousetrap, European Journal of Combinatorics, Volume 30, Issue 2, February 2009, Pages 532-539.
  83. Michael Z. Spivey and Laura L. Steil, "The k-Binomial Transforms and the Hankel Transform", J. Integer Sequences, Volume 9, 2006, Article 06.1.1.
  84. R. Sprugnoli, Moments of Reciprocals of Binomial Coefficients, Journal of Integer Sequences, 14 (2011), #11.7.8.
  85. R. Sprugnoli, Alternating Weighted Sums of Inverses of Binomial Coefficients, J. Integer Sequences, 15 (2012), #12.6.3.
  86. V. V. Srinivas and B. R. Shankar, Integer Complexity: Breaking the Theta(n^2) barrier, World Academy of Science, Engineering and Technology, Vol. 17, 2008-05-27; http://www.waset.org/Publications/integer-complexity-breaking-the-%C3%8E%C2%B8-n2-barrier/6770
  87. Anitha Srinivasan and John W. Nicholson, An improved upper bound for Ramanujan primes, Integers, 15 (2015), #A52.
  88. Blake C. Stacey, Geometric and Information-Theoretic Properties of the Hoggar Lines, arXiv preprint arXiv:1609.03075, 2016
  89. Hermann Stamm-Wilbrandt, The On-Line Encyclopedia of Integer Sequences (OEIS) gets 50, Blog Posting, 2014, https://www.ibm.com/developerworks/community/blogs/HermannSW/entry/the_on_line_encyclopedia_of_integer_sequences_oeis_gets_50?lang=en
  90. Marx Stampfli. Bridged graphs, circuits and Fibonacci numbers. Applied Mathematics and Computation. Volume 302, 1 June 2017, Pages 68-79. doi:10.1016/j.amc.2016.12.030
  91. Pantelimon Stanica, p^q-Catalan Numbers and Squarefree Binomial Coefficients (2000), arXiv:math/0010148.
  92. Pantelimon Stanica, Tsutomu Sasao, Jon T. Butler, Distance Duality on Some Classes of Boolean Functions, Journal of Combinatorial Mathematics and Combinatorial Computing (to appear), 2017.
  93. R. P. Stanley, Hipparchus, Plutarch, Schroeder and Hough, American Mathematical Monthly 104 (1997), 344-350.
  94. Richard P. Stanley, "The Descent Set and Connectivity Set of a Permutation", J. Integer Sequences, Volume 8, 2005, Article 05.3.8.
  95. R. P. Stanley, An Equivalence Relation on the Symmetric Group and Multiplicity-free Flag h-Vectors, PDF
  96. R. P. Stanley and F. Zanello, Unimodality of partitions with distinct parts inside Ferrers shapes, http://www-math.mit.edu/~rstan/papers/distinctparts.pdf, 2013
  97. R. P. Stanley, F. Zanello, The Catalan case of Armstrong's conjecture on core partitions, arXiv preprint arXiv:1312.4352, 2013
  98. R. P. Stanley, F. Zanello, Some asymptotic results on q-binomial coefficients, http://www-math.mit.edu/~rstan/papers/qbc.pdf, 2014.
  99. David Stanovský, A guide to self-distributive quasigroups, or latin quandles, preprint arXiv:1505.06609, 2015. (A000712, A057771, A181769, some not yet included)
  100. David Stanovský, Petr Vojtechovský, Central and medial quasigroups of small order, arxiv preprint arXiv:1511.03534 [math.GR], 2015.
  101. Stees, Ryan, "Sequences of Spiral Knot Determinants" (2016). Senior Honors Projects. Paper 84. James Madison Univ., May 2016; http://commons.lib.jmu.edu/cgi/viewcontent.cgi?article=1043&context=honors201019
  102. P. R. Stein and M. S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers, Discrete Math., 26 (1979), 261-272.
  103. P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31.
  104. Stefan Steinerberger, A hidden signal in the Ulam sequence, Research Report YALEU/DCS/TR-1508, Yale University, 2015. (A002858). Also arXiv preprint arXiv:1507.00267, 2015.
  105. Bertran Steinsky, "A Recursive Formula for the Kolakoski Sequence A000002", J. Integer Sequences, Volume 9, 2006, Article 06.3.7.3
  106. B. von Stengel, New maximal numbers of equilibria in bimatrix games, Discrete and Computational Geometry 21 (1999), 557-568.
  107. Allen Stenger, Experimental Math for Math Monthly Problems, Amer. Math. Monthly, 124 (2017), 116-131. doi:10.4169/amer.math.monthly.124.2.116
  108. C. Stenson, Weighted voting, threshold functions, and zonotopes, in The Mathematics of Decisions, Elections, and Games, Volume 625 of Contemporary Mathematics Editors Karl-Dieter Crisman, Michael A. Jones, American Mathematical Society, 2014, ISBN 0821898663, 9780821898666
  109. F. Stephan, Degrees of Computing and Learning, Habilitationsschrift an der Universitaet Heidelberg. Ueberarbeitete Version veroeffentlicht als Forschungsberichte Mathematische Logik 46 / 1999, Mathematisches Institut, Universitaet Heidelberg, Heidelberg, 1999.
  110. F. Stephan, On the structures inside truth-table degrees. J. Symbolic Logic 66 (2001), no. 2, 731-770. (Only the printed version mentions the On-Line Encyclopedia of Integer Sequences.)
  111. R. Stephan, Divide-and-conquer generating functions. Part I. Elementary sequences, 2003. arXiv:math.CO/0307027
  112. R. Stephan, arXiv:math.CO/0305348 On a sequence related to the Josephus problem], 2003.
  113. Ralf Stephan, Prove or Disprove. 100 Conjectures from the OEIS (2004), arXiv:math/0409509.
  114. T. Stephen and T. Yusun, Counting inequivalent monotone Boolean functions, arXiv preprint arXiv:1209.4623, 2012
  115. Samuel Stern, The Tree of Trees: on methods for finding all non-isomorphic tree-realizations of degree sequences, Honors Thesis, Wesleyan University, 2017.
  116. Stevanovic, Dragan; de Abreu, Nair M. M.; de Freitas, Maria A. A.; Del-Vecchio, Renata, Walks and regular integral graphs. Linear Algebra Appl. 423 (2007), no. 1, 119-135.
  117. Gary E. Stevens, "A Connell-Like Sequence", J. Integer Sequences, Volume 1, 1998, Article 98.1.4.
  118. David I. Stewart, arXiv:1101.3004 Unbounding Ext [math.RT]
  119. J. F. Stilck and R. M. Brum, Reversible limit of processes of heat transfer, arXiv preprint arXiv:1303.2911, 2013
  120. Alex Stivala, P Keeler, Another phase transition in the Axelrod model, arXiv:1612.02537, 2016
  121. Peter Stockman, Upper Bounds on the Time Complexity of Temporal CSPs, Linköping University | Department of Computer science, Master thesis, 30 ECTS | Datateknik 2016 | LIU-IDA/LITH-EX-A--16/022--SE; http://www.diva-portal.org/smash/get/diva2:943554/FULLTEXT01.pdf
  122. Paul K. Stockmeyer, The Pascal Rhombus and the Stealth Configuration, preprint arXiv:1504.04404, 2015. (A001045, A055099, A256959, A000302)
  123. Paul K. Stockmeyer, An Exploration of Sequence A000975, Fib. Quart. 55 (5) (2017) 174; also arXiv:1608.08245
  124. A. Stoimenow, On enumeration of chord diagrams and asymptotics of Vassiliev invariants, FU Berlin Digitale Dissertation (1999).
  125. A. Stoimenow, Wheel graphs, Lucas numbers and the determinant of a knot, Max Planck Institut-Oberseminar, 30/3/2000.
  126. A. Stoimenow, Graphs, determinants of knots and hyperbolic volume, preprint.
  127. Stoimenow, A. On the number of chord diagrams. Discrete Math. 218 (2000), no. 1-3, 209-233.
  128. A. Stoimenow, arXiv:math.GT/0210174 , Generating functions, Fibonacci numbers and rational knots, 2002, J. Algebra 310 (2007), no. 2, 491-525.
  129. A. Stoimenow. On the crossing number of positive knots and braids and braid index criteria of Jones and Morton-Williams-Franks. Trans. Amer. Math. Soc. 354 (2002) 3927-3954.
  130. Stoimenow, A., Square numbers, spanning trees and invariants of achiral knots. Comm. Anal. Geom. 13 (2005), no. 3, 591-631.
  131. A Stoimenow, A theorem on graph embedding with a relation to hyperbolic volume, Combinatorica, October 2016, Volume 36, Issue 5, pp 557–589
  132. T. Stojadinovic, The Catalan numbers, Preprint 2015; https://www.researchgate.net/profile/Tanja_Stojadinovic2/publication/281062823_The_Catalan_numbers/links/55d3022008ae7fb244f56e70.pdf
  133. D. Stolee, Isomorph-free generation of 2-connected graphs with applications, Arxiv preprint arXiv:1104.5261, 2011
  134. M. Stoll, Chabauty without the Mordell-Weil group, arXiv preprint arXiv:1506.04286, 2015
  135. Th. Stoll, "On Families of Nonlinear Recurrences Related to Digits", J. Integer Sequences, Volume 8, 2005, Article 05.3.2.
  136. Stoll, Thomas, On a problem of Erdos and Graham concerning digits. Acta Arith. 125 (2006), no. 1, 89-100.
  137. Th. Stoll, On Hofstadter's married functions, Fib. Q., 46/47 (2008/2009), 62-67.
  138. Thomas Stoll, A fancy way to obtain the binary digits of 759250125 sqrt{2} (2009) arXiv:0902.4168, Amer. Math. Monthly, 117 (2010), 611-617.
  139. Thomas Stoll, On digital blocks of polynomial values and extractions in the Rudin–Shapiro sequence, RAIRO - Theoretical Informatics and Applications (RAIRO: ITA), EDP Sciences, 2016, 50, pp. 93-99. <hal-01278708>.
  140. D. S. Stones, arXiv:0908.2166 On prime chains [math.NT]
  141. D. S. Stones, The many formulae for the number of Latin rectangles, Electron. J. Combin 17 (2010), A1.
  142. D. S. Stones, The pariy of the number of quasigroups, Discr. Math., 310 (2010), 3033-3039.
  143. D. S. Stones and I. M. Wanless, Compound orthomorphisms of the cyclic group, Finite Fields Appl. 16 (2010), 277--289.
  144. D. S. Stones and I. M. Wanless, Divisors of the number of Latin rectangles, J. Combin. Theory Ser. A 117 (2010), 204--215.
  145. RJ Stones, S Lin, X Liu, G Wang, On Computing the Number of Latin Rectangles, Graphs and Combinatorics, Graphs and Combinatorics (2016) 32:1187–1202; doi:10.1007/s00373-015-1643-1
  146. George Story, Counting Maximal Chains in Weighted Voting Posets, Rose-Hulman Undergraduate Mathematics Journal, Vol. 14, No. 1, 2013.
  147. B. D. Stosic, T. Stosic, I. P. Fittipaldi and J. J. P. Veerman, Residual entropy of the square Ising antiferromagnet in the maximum critical field: the Fibonacci matrix, Journal of Physics A: Mathematical and General, Volume 30, Number 10, 1997 , pp. L331-L337.
  148. A. Strangeway, A Reconstruction Theorem for Quantum Cohomology of Fano Bundles on Projective Space, arXiv preprint arXiv:1302.5089, 2013
  149. A. Strangeway, Quantum reconstruction for Fano bundles on projective space, Nagoya Math. J. Volume 218 (2015), 1-28.
  150. Strannegard, C., et al., An anthropomorphic method for number sequence problems. Cognitive Systems Research (2012), doi:10.1016/j.cogsys.2012.05.003
  151. C. Strannegård, A. R. Nizamani, A. Sjöberg, F. Engström, Bounded Kolmogorov Complexity Based on Cognitive Models, 2013; http://engstrom.morot.org/material/bounded_kolmogorov.pdf
  152. Krzysztof Strasburger, The order of three lowest-energy states of the six-electron harmonium at small force constan, The Journal of Chemical Physics 144, 234304 (2016); doi:10.1063/1.4953677
  153. Ross Street, arXiv:math.HO/0303267 Trees, permutations and the tangent function], Reflections 27 (2) (Math. Assoc. of NSW, May 2002), pp. 19-23.
  154. Ross Street, Surprising relationships connecting ploughing a field, mathematical trees, permutations, and trigonometry, Slides from a talk, July 15 2015, Macquarie University. ["There is a Web Page: <https://oeis.org/> by N.J.A. Sloane. It tells, from typing the first few terms of a sequence, whether that sequence has occurred somewhere else in Mathematics. Postgraduate student Daniel Steffen traced this down and found, to our surprise, that the sequence was related to the tangent function tan x. Ryan and Tam searched out what was known about this connection and discovered some apparently new results. We all found this a lot of fun and I hope you will too."]
  155. Volker Strehl, A note on similarity relations, Discrete Mathematics, Volume 19, Issue 1, 1977, Pages 99-101.
  156. Volker Strehl, Alternating permutations and modified Ghandi-polynomials, Discrete Mathematics, Volume 28, Issue 1, 1979, Pages 89-100.
  157. Volker Strehl, Lacunary Laguerre Series from a Combinatorial Perspective, Séminaire Lotharingien de Combinatoire, B76c (2017).
  158. Kyle Sturgill-Simon, An Interesting Opportunity: The Gilbreath Conjecture, Honors Thesis, Mathematics Dept., Carroll Collge, 2012; http://www.carroll.edu/library/thesisArchive/Sturgill-Simon_2012final.pdf
  159. Bernd Sturmfels, Ngoc Mai Tran, arXiv:1105.5504 COMBINATORIAL TYPES OF TROPICAL EIGENVECTORS], 2011.
  160. J. C. Su, On some properties of two simultaneous polygonal sequences, JIS 10 (2007) 07.10.4.
  161. Po-Chi Su, More Upper Bounds on Taxicab and Cabtaxi Numbers, Journal of Integer Sequences, 19 (2016), #16.4.3.
  162. X.-T. Su, D.-Y. Yang, W.-W. Zhang, A note on the generalized factorial, Australasian Journal of Combinatorics, Volume 56 (2013), Pages 133-137.
  163. D. Subedi, Complementary Bell Numbers and p-adic Series, Journal of Integer Sequences, 17 (2014), #14.3.1.
  164. R. A. Sulanke, A recurrence restricted by a diagonal condition: generalized Catalan arrays, Fibonacci Quart. 27 (1989), 33-46.
  165. R. A. Sulanke, "Moments of Generalized Motzkin Paths", J. Integer Sequences, Volume 3, 2000, Article 00.1.1.
  166. R. A. Sulanke, "Objects Counted by the Central Delannoy Numbers", J. Integer Sequences, Volume 6, 2003, Article 03.1.5.
  167. R. A. Sulanke, Generalizing Narayana and Schröder numbers to higher dimensions, Electron. J. Combin. 11 (2004), Research Paper 54, 20 pp. ]
  168. R. A. Sulanke, Moments, Narayana Numbers and the Cut and Paste for Lattice Paths, Journal of Statistical Planning and Inference, Volume 135, Issue 1, 1 November 2005, Pages 229-244.
  169. R. A. Sulanke, Three dimensional Narayana and Schröder numbers, Theoret. Comput. Sci. 346 (2005), no. 2-3, 455-468.
  170. Blair D. Sullivan, "On a Conjecture of Andrica and Tomescu", Journal of Integer Sequences, Vol. 16 (2013), #13.3.1.
  171. Everett Sullivan, Linear chord diagrams with long chords, arXiv preprint arXiv:1611.02771, 2016
  172. Rosemary Sullivan and Neil Watling, Independent divisibility pairs on the set of integers from 1 to n, INTEGERS 13 (2013) #A65.
  173. H. M. Sultan, Net of Pants Decompositions Containing a non-trivial Separating Curve in the Pants Complex, Arxiv preprint arXiv:1106.1472, 2011
  174. H. Sultan, Separating pants decompositions in the pants complex, PDF.
  175. R. Sulzgruber, The Symmetry of the q,t-Catalan Numbers, Masterarbeit, Univ. Wien, 2013; http://www.mat.univie.ac.at/~kratt/theses/sulzgruber.pdf
  176. Brian Y. Sun, Baoyindureng Wu, Two-log-convexity of the Catalan-Larcombe-French sequence, Journal of Inequalities and Applications, 2015, 2015:404; doi:10.1186/s13660-015-0920-0.
  177. Brian Y. Sun, JX Meng, Proof of a Conjecture of Z.-W. Sun on Trigonometric Series, arXiv preprint arXiv:1606.08153, 2016
  178. Ping Sun, Enumeration of standard Young tableaux of shifted strips with constant width, arXiv preprint arXiv:1506.07256, 2015 Also Electronic Journal of Combinatorics, Volume 24(2), 2017, #P2.41.
  179. Xinyu Sun, "New Lower Bound On The Number of Ternary Square-Free Words", J. Integer Sequences, Volume 6, 2003, Article 03.3.2.
  180. Yidong Sun, The Star of David Rule (2008); arXiv:0805.1277; Linear Algebra and its Applications, Volume 429, Issues 8-9, 16 October 2008, Pages 1954-1961.
  181. Yidong Sun and Fei Ma, Four transformations on the Catalan triangle, arXiv preprint arXiv:1305.2017, 2013
  182. Yidong Sun and Fei Ma, Minors of a Class of Riordan Arrays Related to Weighted Partial Motzkin Paths, arXiv preprint arXiv:1305.2015, 2013
  183. Yidong Sun and Fei Ma, Some new binomial sums related to the Catalan triangle, Electronic Journal of Combinatorics 21(1) (2014), #P1.33
  184. Yidong Sun and Zhiping Wang, Pattern Avoidance in Generalized Non-crossing Trees (2008); arXiv:0805.1280
  185. Yidong Sun and Zhiping Wang, String pattern avoidance in generalized non-crossing trees, Disc. Math. Theor. Comp. Sci. 11 (2009) 79-94.
  186. Sun, Yidong; Wu, Xiaojuan The largest singletons of set partitions. European J. Combin. 32 (2011), no. 3, 369-382.
  187. Sun, Yidong; Xu, Yanjie The largest singletons in weighted set partitions and its applications. Discrete Math. Theor. Comput. Sci. 13 (2011), no. 3, 75-85.
  188. Zhe Sun, T Suenaga, P Sarkar, S Sato, M Kotani, H Isobe, Stereoisomerism, crystal structures, and dynamics of belt-shaped cyclonaphthylenes, Proc. Nath. Acead. Sci. USA, vol. 113 no. 29, pp. 8109–8114, doi:10.1073/pnas.1606530113
  189. Zhi-Hong Sun, "Expansion and identities concerning Lucas Sequences", The Fibonacci Quarterly, Volume 44, May 2006, pages 145-153.
  190. Sun, Zhi-Hong Congruences concerning Lucas sequences. Int. J. Number Theory 10 (2014), no. 3, 793-815.
  191. Zhi-Hong Sun, Congruences for Domb and Almkvist-Zudilin numbers, Integral Transforms & Special Functions, Vol. 26 Issue 8, p642-659, 2015, doi:10.1080/10652469.2015.1034122
  192. Zhi-Hong Sun, Supercongruences involving Euler polynomials, Proc. American Mathematical Society, 144 (2016), 3295-3308.
  193. Zhi-Wei Sun, doi:10.1016/j.jnt.2011.06.005 On Delannoy numbers and Schroeder numbers, J. Number Theory 131 (2011) 2387-2397; arXiv:1009.2486.
  194. Zhi-Wei Sun, On sums involving products of three binomial coefficients, arXiv:1012.3141
  195. Sun, Zhi-Wei, p-adic valuations of some sums of multinomial coefficients. Acta Arith. 148 (2011), no. 1, 63-76.
  196. Zhi-Wei Sun, Conjectures involving combinatorial sequences, Arxiv preprint arXiv:1208.2683, 2012
  197. Z.-W. Sun, Conjectures involving arithmetical sequences, Number Theory: Arithmetic in Shangrila (eds., S. Kanemitsu, H.-Z. Li and J.-Y. Liu), Proc. the 6th China-Japan Sem. Number Theory (Shanghai, August 15-17, 2011), World Sci., Singapore, 2013, pp. 244-258; PDF.
  198. Z.-W. Sun, Conjectures involving primes and quadratic forms, arXiv preprint arXiv:1211.1588, 2012
  199. Zhi-Wei Sun, Products and Sums Divisible by Central Binomial Coefficients, Electronic Journal of Combinatorics, 20(1) (2013), #P9.
  200. Z.-W. Sun, Fibonacci numbers modulo cubes of primes, arXiv:0911.3060; Taiwanese J. Math. 17 (2013). doi:10.11650/tjm.17.2013.2488
  201. Z.-W. Sun, Connections between p = x^2+ 3y^2 and Franel numbers, J. Number Theory 133 (2013), no. 9, 2914-2928.
  202. Z.-W. Sun On some determinants with Legendre symbol entries, 2013; PDF
  203. Z.-W. Sun, Some new problems in additive combinatorics, arXiv preprint arXiv:1309.1679, 2013
  204. Z.-W. Sun, On a^n+ bn modulo m, arXiv preprint arXiv:1312.1166, 2013
  205. ZW SUN, A conjecture on unit fractions involving primes, Preprint 2015; http://maths.nju.edu.cn/~zwsun/UnitFraction.pdf
  206. Sun, Zhi-Wei On functions taking only prime values. J. Number Theory 133 (2013), no. 8, 2794-2812.
  207. Sun, Zhi-Wei Congruences for Franel numbers. Adv. in Appl. Math. 51 (2013), no. 4, 524-535.
  208. Z.-W. Sun, Problems on combinatorial properties of primes, arXiv preprint arXiv:1402.6641, 2014
  209. Z.-W. Sun, New observations on primitive roots modulo primes, arXiv preprint arXiv:1405.0290, 2014
  210. Z.-W. Sun, Congruences involving g_n(x) = Sum_{k= 0..n} C(n,k)^2 C(2k,k) x^k, arXiv preprint arXiv:1407.0967, 2014
  211. Sun, Zhi-Wei Congruences involving generalized central trinomial coefficients. Sci. China Math. 57 (2014), no. 7, 1375-1400.
  212. Z.-W. Sun, A result similar to Lagrange's theorem, arXiv preprint arXiv:1503.03743, 2015
  213. Zhi-Wei Sun, Refining Lagrange's four-square theorem, arXiv:1604.06723, 2016.
  214. Zhi-Wei Sun and Roberto Tauraso, Congruences involving Catalan numbers (2007), arXiv:0709.1665.
  215. Z-W. Sun and R. Tauraso, doi:10.1016/j.aam.2010.01.001 New congruences for central binomial coefficients, Adv. Appl Math 45 (1) (2010) 125-148
  216. Sun, Zhi-Wei; Tauraso, Roberto On some new congruences for binomial coefficients. Int. J. Number Theory 7 (2011), no. 3, 645-662.
  217. P. Sung and Y. Zhang, Recurring Recurrences in Counting Permutations, 2002-2003.
  218. Zoran Sunik [or Sunic], "Young tableaux and other mutually describing sequences", J. Integer Sequences, Volume 5, 2002, Article 02.1.5.
  219. Z. Sunik [or Sunic], Self-describing sequences and the Catalan family tree (PostScript , Pdf), Electron. J. Combin. 10 (2003), Note 5, 9 pp.
  220. Zoran Sunik [or Sunic], Tree morphisms, transducers and integer sequences (2006), arXiv:math/0612080.
  221. Zoran Sunik [or Sunic], "Rational Tree Morphisms and Transducer Integer Sequences: Definition and Examples", J. Integer Sequences, Volume 10, 2007, Article 07.4.3.
  222. D. Suprijanto and Rusliansyah, Observation on Sums of Powers of Integers Divisible by Four, Applied Mathematical Sciences, Vol. 8, 2014, no. 45, 2219 - 2226; doi:10.12988/ams.2014.4140.
  223. D. Suprijanto, I. W. Suwarno, Observation on Sums of Powers of Integers Divisible by 3k-1, Applied Mathematical Sciences, Vol. 8, 2014, no. 45, 2211 - 2217; doi:10.12988/ams.2014.4139.
  224. Ruedi Suter, "Two Analogues of a Classical Sequence", J. Integer Sequences, Volume 3, 2000, Article 00.1.8.
  225. Andrew V. Sutherland, Constructing elliptic curves over finite fields with prescribed torsion (2008); arXiv:0811.0296
  226. A. V. Sutherland, Notes on torsion subgroups of elliptic curves over number fields, 2012, http://math.mit.edu/~drew/MazursTheoremSubsequentResults.pdf
  227. A. V. Sutherland, Torsion subgroups of elliptic curves over number fields, 2012, http://www-math.mit.edu/~drew/MazursTheoremSubsequentResults.pdf
  228. K. Sutner, The Ehrenfeucht-Mycielski Staircase, (ps, pdf), Impl. Appl Autom. 2759 (2003) 282-293; doi:10.1007/3-540-45089-0_26
  229. Klaus Sutner and Sam Tetruashvili, Inferring Automatic Sequences, http://www.cs.cmu.edu/~sutner/papers/auto-seq.pdf
  230. A. Sutyak, Pierce-Engel Hybrid Expansions, Dissertation, West Virginia Univ., 2008.
  231. I. D. Svalbe and A. Z. Tirkel, Extended families of 2D arrays with near optimal auto and low cross-correlation, EURASIP Journal on Advances in Signal Processing, 2017:18. doi:10.1186/s13634-017-0455-2
  232. Jerry Swan, Harmonic analysis and resynthesis of Sliding-Tile Puzzle heuristics, 2017 IEEE Congress on Evolutionary Computation (CEC). doi: 10.1109/CEC.2017.7969355
  233. J. W. H. Swanepoel, On a generalization of a theorem by Euler, Journal of Number Theory 149 (2015) 46-56.
  234. Christine Swart and Andrew Hone, Integrality and the Laurent phenomenon for Somos 4 sequences (2005), arXiv:math/0508094.
  235. J. F. Sweeney, Clifford Clock and the Moolakaprithi Cube, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.404.5350&rep=rep1&type=pdf, 2014.
  236. John Frederick Sweeney, "Shakti Peetha 52, 42 Nomes, the F4 Exceptional Lie Algebra and the Sedenions of Ancient India and Egypt", http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.697.9942&rep=rep1&type=pdf (Mentions A121738).
  237. S. Sykora, Blazys Expansions and Continued Fractions, Stan's Library, Volume IV, Mathematics, 2013; PDF
  238. Stanislav Sykora, Fixed points of the mappings exp(z) and –exp (z) in C, http://www.ebyte.it/library/docs/math16/2016_MATH_Sykora_FixedPointsExp.pdf; DOI: 10.3247/SL6Math16.002, 2016.
  239. Stanislav Sykora, Sequences related to the differential equation f ' ' = af ' f, Stan's Library, Vol.VI, June 2017. doi:10.3247/SL6Math17.001
  240. Szabados, Michal Distances of group tables and Latin squares via equilateral triangle dissections. J. Combin. Theory Ser. A 123 (2014), 1-7.
  241. P. J. Szablowski, On moments of Cantor and related distributions, arXiv preprint arXiv:1403.0386, 2014
  242. Tamás Szakács. Convolution of second order linear recursive sequences I. Annales Mathematicae et Informaticae 46 (2016) pp. 205–216.
  243. Székely, L. A.; Wang, Hua, On subtrees of trees. Adv. in Appl. Math. 34 (2005), no. 1, 138-155.
  244. Székely, L. A.; Wang, Hua, doi:10.1016/j.dam.2006.05.008 Binary trees with the largest number of subtrees, Discrete Appl. Math. 155 (2007), no. 3, 374-385.
  245. Szilard Szalay, G Barcza, T Szilvási, L Veis, Ö Legeza, The correlation theory of the chemical bond, arXiv preprint arXiv:1605.06919, 2016
  246. Szilard Szalay and Zoltan Kokenyesi, Partial separability revisited, Arxiv preprint arXiv:1206.6253, 2012
  247. Igor Szczyrba, On the existence of ratio limits of weighted n-generalized Fibonacci sequences with arbitrary initial conditions, arXiv preprint arXiv:1604.02361, 2016
  248. I. Szczyrba, R. Szczyrba, M. Burtscher, Analytic and Geometric Representations of the Generalized n-anacci Constants, arXiv preprint arXiv:1409.0577, 2014
  249. Igor Szczyrba, R Szczyrba, M Burtscher, Geometric Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, 19, 2016, #16.3.8.
  250. Szynal-Liana, Anetta; Włoch, Andrzej; Włoch, Iwona On generalized Pell numbers generated by Fibonacci and Lucas numbers. Ars Combin. 115 (2014), 411-423.

About this page

  • This is part of the series of OEIS Wiki pages that list works citing the OEIS.
  • Additions to these pages are welcomed.
  • But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
  • If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
  • Works are arranged in alphabetical order by author's last name.
  • Works with the same set of authors are arranged by date, starting with the oldest.
  • The full list of sections is: A Ba Bi Ca Ci D E F G H I J K L M N O P Q R Sa Sl T U V W X Y Z.
  • For further information, see the main page for Works Citing OEIS.
Retrieved from "http://oeis.org/wiki/CiteSl"
Personal tools