This site is supported by donations to The OEIS Foundation.

CiteS

From OeisWiki

Jump to: navigation, search


Contents

CiteS

About this page

  • This is part of the series of OEIS Wiki pages that list works citing the OEIS.
  • Additions to these pages are welcomed.
  • But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
  • If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
  • Works are arranged in alphabetical order by author's last name.
  • Works with the same set of authors are arranged by date, starting with the oldest.
  • This section lists works in which the first author's name begins with the letter S.
  • The full list of sections is: CiteA, CiteB, CiteC, CiteD, CiteE, CiteF, CiteG, CiteH, CiteI, CiteJ, CiteK, CiteL, CiteM, CiteN, CiteO, CiteP, CiteQ, CiteR, CiteS, CiteT, CiteU, CiteV, CiteW, CiteX, CiteY, CiteZ.
  • For further information, see the main page for Works Citing OEIS.


References

  1. R. Sachdeva and A.K. Agarwal, Combinatorics of certain restricted n-color composition functions, Discrete Mathematics, 340, (2017), 361-372.
  2. J. Sack and H. Ulfarsson, Refined inversion statistics on permutations, Arxiv preprint arXiv:1106.1995, 2011.
  3. Markus Saers, Dekai Wu and Chris Quirk, On the Expressivity of Linear Transductions, PDF.
  4. Pablo Saez, X. Vidaux, M. Vsemirnov, Optimal bounds for Buchi's problem in modular arithmetic, Journal of Number Theory Volume 149, April 2015, Pages 368-403.
  5. Bruce E. Sagan, Congruences via abelian groups, Journal of Number Theory, Volume 20, Issue 2, April 1985, Pages 210-237.
  6. Bruce Sagan, Proper partitions of a polygon and k-Catalan numbers (2004), arXiv:math/0407280.
  7. Sage, Common Graphs (Graph Generators)
  8. Hanno Sahlmann, Entropy calculation for a toy black hole (2007), arXiv:0709.0076.
  9. R. Sainudiin, Algebra and Arithmetic of Plane Binary Trees, Slides of a talk, 2014; http://www.math.canterbury.ac.nz/~r.sainudiin/talks/MRP_UCPrimer2014.pdf
  10. Raazesh Sainudiin, Statistical Regular Pavings in Bayesian Nonparametric Density Estimation, 2014; http://archytas.birs.ca/workshops/2014/14w5125/files/Sainudiin.pdf
  11. R. Sainudiin, Some Arithmetic, Algebraic and Combinatorial Aspects of Plane Binary Trees, Slides from a talk, Oct 27 2014; http://www.math.canterbury.ac.nz/~r.sainudiin/talks/20141027_AriAlgComPBT_CornellDGCSeminar.pdf
  12. R Sainudiin, A Veber, A Beta-splitting model for evolutionary trees, arXiv preprint arXiv:1511.08828, 2015
  13. A. Sakhnovich, L. Sakhnovich, Nonlinear Fokker-Planck equation: stability, distance and corresponding extremal problem in the spatially inhomogeneous case, arXiv preprint arXiv:1307.1126, 2013
  14. Ana Salagean, David Gardner and Raphael Phan, Index Tables of Finite Fields and Modular Golomb Rulers, in Sequences and Their Applications - SETA 2012, Lecture Notes in Computer Science. Volume 7280, 2012, pp. 136-147.
  15. J. Salas and A. D. Sokal, arXiv:cond-mat/0004330 Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models I. General Theory and Square-Lattice Chromatic Polynomial], J. Statist. Phys. 104 (2001) 609-699.
  16. J. Salas and A. D. Sokal, Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models. V. Further Results for the Square-Lattice Chromatic Polynomial, J. Stat. Phys. 135 (2009) 279-373, arXiv:0711.1738
  17. H Salehian, R Chakraborty, E Ofori, D Vaillancourt, An efficient recursive estimator of the Fréchet mean on a hypersphere with applications to Medical Image Analysis, Preprint 2015; http://www-sop.inria.fr/asclepios/events/MFCA15/Papers/MFCA15_4_2.pdf
  18. A Salerno, D Schindler, A Tucker, Symmetries of Rational Functions Arising in Ecalle's Study of Multiple Zeta Values; http://www.math.rochester.edu/people/faculty/abeeson/mzv1c.pdf, 2015; In: Women in Numbers Europe: Research Directions, Springer, 2015
  19. Ville Salo, Decidability and Universality of Quasiminimal Subshifts, arXiv preprint arXiv:1411.6644, 2014
  20. D. Salomon, Variable-length Codes for Data Compression, Springer-Verlag.
  21. V. Salov, Inevitable Dottie Number. Iterals of cosine and sine, arXiv:1212.1027, 2012
  22. E. Salturk and I. Siap, Generalized Gaussian Numbers Related to Linear Codes over Galois Rings, European Journal of Pure and Applied Mathematics, Vol. 5, No. 2, 2012, 250-259; ISSN 1307-5543; www.ejpam.com.
  23. Paolo Salvatore and Roberto Tauraso, The operad Lie is free (2008); arXiv:0802.3010; Journal of Pure and Applied Algebra, Volume 213, Issue 2, February 2009, Pages 224-230.
  24. Rafaele Salvia, A catalogue of matchstick graphs, arXiv:1303.5965
  25. B. Salvy, Automatic Asymptotics and Generating Functions, Algorithms seminar, 1992-1993, INRIA Research Report #2130, 47-50. (Ps, Pdf)
  26. B. Salvy, Découverte de récurrences
  27. B. Salvy and S. Yu. Slavyanov, A Combinatorial Problem in the Classification of Second-Order Linear ODE's, Research Report no. 2600, Institut National de Recherche en Informatique et en Automatique, 1995. 7 pages.
  28. B. Salvy and P. Zimmermann, Gfun: a Maple package for the manipulation of generating and holonomic functions in one variable. ACM Transactions on Mathematical Software, vol. 20, no. 2, 1994, pages 163-177.
  29. Samieinia, Shiva, The number of Khalimsky-continuous functions on intervals. Rocky Mountain J. Math. 40 (2010), no. 5, 1667-1687.
  30. M. J. Samuel, Word posets, with applications to Coxeter groups, Arxiv preprint arXiv:1108.3638, 2011
  31. F. M. Sanchez, Remarkable Properties of the Eddington Number 137 and Electric Parameter 137.036 excluding the Multiverse Hypothesis, 2015; http://www.rxiv.org/pdf/1502.0147v5.pdf
  32. Selene Sanchez-Flores, The Lie module structure on the Hochschild cohomology groups of monomial algebras with radical square zero (2007), arXiv:0711.2810; Journal of Algebra, Volume 320, Issue 12, 15 December 2008, Pages 4249-4269.
  33. David Sankoff and Lani Haque, Power Boosts for Cluster Tests, in Comparative Genomics, Lecture Notes in Computer Science, Volume 3678/2005, Springer-Verlag.
  34. C. Sanna, On Arithmetic Progressions of Integers with a Distinct Sum of Digits, Journal of Integer Sequences, Vol. 15 (2012), #12.8.1.
  35. Joseph M. Santmyer, A stirling like sequence of rational numbers, Discrete Mathematics, Volume 171, Issues 1-3, 20 June 1997, Pages 229-235.
  36. Santocanale, Luigi; Wehrung, Friedrich The extended permutohedron on a transitive binary relation. European J. Combin. 42 (2014), 179-206.
  37. Andrés Santos, Density Expansion of the Equation of State, in A Concise Course on the Theory of Classical Liquids, Volume 923 of the series Lecture Notes in Physics, pp 33-96, 2016. DOI:10.1007/978-3-319-29668-5_3
  38. F. Santos, C. Stump, V. Welker, Noncrossing sets and a Grassmann associahedron, arXiv preprint arXiv:1403.8133, 2014; also in FPSAC 2014, Chicago, USA; Discrete Mathematics and Theoretical Computer Science (DMTCS) Proceedings, 2014, 609-620.
  39. Biswajit Sanyal, S Majumder, WK Hon, Efficient Generation of Top-k Procurements in a Multi-item Auction, in WALCOM: Algorithms and Computation: 10th International Workshop, WALCOM 2016, Kathmandu, Nepal, March 29–31, 2016, Proceedings, Pages pp 181-193, 2016; DOI 10.1007/978-3-319-30139-6_15
  40. Raman Sanyal, Axel Werner, G\"unter M. Ziegler, On Kalai's conjectures concerning centrally symmetric polytopes (2007), arXiv:0708.3661.
  41. Sapounakis, A.; Tasoulas, I.; Tsikouras, P. Ordered trees and the inorder traversal. Discrete Math. 306 (2006), no. 15, 1732-1741.
  42. A. Sapounakis, I. Tasoulas and P. Tsikouras, "On the Dominance Partial Ordering of Dyck Paths", J. Integer Sequences, Volume 9, 2006, Article 06.2.5.
  43. A. Sapounakis, I. Tasoulas and P. Tsikouras, Counting strings in Dyck paths, Discrete Math., 307 (2007), 2909-2924.
  44. A. Sapounakis, I. Tasoulas, P. Tsikouras, Enumeration of strings in Dyck paths: A bijective approach, Discrete Mathematics, Volume 309, Issue 10, 28 May 2009, Pages 3032-3039.
  45. A. Sapounakis and P. Tsikouras, "On k-colored Motzkin words", J. Integer Sequences, Volume 7, 2004, Article 04.2.5.
  46. Sapounakis, A.; Tsikouras, P. Counting peaks and valleys in k-colored Motzkin paths. Electron. J. Combin. 12 (2005), Research Paper 16, 20 pp.
  47. Aristidis Sapounakis, Panagiotis Tsikouras, Ioannis Tasoulas, Kostas Manes, Strings of Length 3 in Grand-Dyck Paths and the Chung-Feller Property, Electr. J. Combinatorics, 19 (2012), #P2.
  48. G. M. Saridis et al., Survey and Evaluation of Space Division Multiplexing: From Technologies to Optical Networks, EEE COMMUNICATIONS SURVEYS & TUTORIALS, AUGUST 2015, doi:10.1109/COMST.2015.2466458
  49. T. Sasao and J. T. Butler, Applications of Zero-Suppressed Decision Diagrams, Synthesis Lectures on Digital Circuits and Systems, November 2014, 123 pages, doi:10.2200/S00612ED1V01Y201411DCS045
  50. Ulrike Sattler, Decidable classes of formal power series with nice closure properties, Diplomarbeit im Fach Informatik, Univ. Erlangen - Nuernberg, Jul 27 1994.
  51. J. Sauerberg and L. Shu, The long and the short on counting sequences, Amer. Math. Monthly 104 (1997), no. 4, 306-317.
  52. Savage, Carla D. Generating permutations with k-differences. SIAM J. Discrete Math. 3 (1990), no. 4, 561--573. MR1069115 (92c:05003)
  53. Carla D. Savage and Gopal Viswanathan, The 1/k-Eulerian Polynomials, Electr. J. Combinatorics, 19 (2012), #P9.
  54. Carla D. Savage and Herbert S. Wilf, Pattern avoidance in compositions and multiset permutations (2005), arXiv:math/0504310.
  55. Sawada, J., A simple Gray code to list all minimal signed binary representations. SIAM J. Discrete Math. 21 (2007), no. 1, 16-25 .
  56. Joe Sawada, Roy Li, Stamp Foldings, Semi-Meanders, and Open Meanders: Fast Generation Algorithms, Electr. J. Combinatorics, 19 (2012), #P43.
  57. Sawada, J.; Williams, A. Efficient oracles for generating binary bubble languages. Electron. J. Combin. 19 (2012), no. 1, Paper 42, 20 pp.
  58. J Sawada, A Williams, Successor rules for flipping pancakes and burnt pancakes, Preprint 2015; http://www.cis.uoguelph.ca/~sawada/papers/pancake_successor.pdf
  59. Nitin Saxena, Simone Severini, Igor Shparlinski, Parameters of Integral Circulant Graphs and Periodic Quantum Dynamics (2007), arXiv:quant-ph/0703236.
  60. Artur Schaefer, Endomorphisms of The Hamming Graph and Related Graphs, arXiv preprint arXiv:1602.02186, 2016
  61. W. O. Scheeren, The Hidden Web: A Sourcebook, Published by Libraries Unlimited, Santa Barbara, CA, 2012.
  62. J. vom Scheidt, H.-J. Starkloff and R. Wunderlich, Stationary solutions of random differential equations with polynomial nonlinearities, Stochastic Analysis and Applications, 6(19):1059-1075, 2001.
  63. Trevor Scheopner, The Cyclic Nature (and Other Intriguing Properties) of Descriptive Numbers, Princeton Undergraduate Mathematics Journal, Issue 1, Article 4, 2015. (A005151, A006711)
  64. Markus Schepke, Über Primzahlerzeugende Folgen, Bachelor Thesis, U. Hannover, (2009)
  65. J. L. Schiffman, Exploring the Fibonacci sequence of order two with CAS technology, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.392.6982&rep=rep1&type=pdf; no date.
  66. F. Schilder, Robust Text Analysis via Underspecification, in the Proceedings of the Workshop on Robust Methods in Analysis of Natutal Language Data (ROMAND 2000), A. Balim, V. Pallotta and H. Ghorbel (eds.), Lausanne, Switzerland, pages 105-120.
  67. Ernesto Schirmacher, Log-Concavity and the Exponential Formula, Journal of Combinatorial Theory, Series A, Volume 85, Issue 2, February 1999, Pages 127-134.
  68. E. Schlemm, On the expected number of successes in a sequence of nested Bernoulli trials, arXiv preprint arXiv:1303.4979, 2013
  69. S. C. Schlicker, Numbers Simultaneously Polygonal and Centered Polygonal, Mathematics Magazine, Vol. 84, No. 5, December 2011 , pp. 339-?; doi:10.4169/math.mag.84.5.339
  70. S. Schlicker, L. Morales, D. Schultheis, polygonal chain sequences in the space of compact sets, JIS 12 (2009) 09.1.7.
  71. Michael J. Schlosser and Meesue Yoo, Elliptic Rook and File Numbers, Electronic Journal of Combinatorics, 24(1) (2017), #P1.31
  72. Maxie Schmidt, A computer algebra package for polynomial sequence recognition, MS Thesis, University of Illinois at Urbana-Champaign, 2014; https://www.ideals.illinois.edu/handle/2142/49378
  73. Heinz Schmitz and Sebastian Niemann, A Bicriteria Traveling Salesman Problem with Sequence Priorities, in Metaheuristics in the Service Industry, Lecture Notes in Economics and Mathematical Systems, Volume 624.
  74. Schmutz, Eric Period lengths for iterated functions. Combin. Probab. Comput. 20 (2011), no. 2, 289-298.
  75. B. Schölkopf, Introduction to Machine Learning, 2011; PDF.
  76. Bernhard Schölkopf, Statistical and causal approaches to machine learning, https://www.youtube.com/watch?v=ek9jwRA2Jio, 2014 (see about 11 minutes into the talk).
  77. B. Schoenmakers, A tight lower bound for top-down skew heaps, Information Processing Letters, 61(5): 279-284, 14 March 1997.
  78. P. Schogt, The Wild Number Problem: math or fiction?, arXiv:1211.6583, 2012
  79. Bernard Schott, Les nombres brésiliens, Quadrature, no. 76, avril-juin 2010, pages 30-38 Les nombres brésiliens, Reprinted from Quadrature, no. 76, avril-juin 2010, pages 30-38, included here with permission from the editors of Quadrature.
  80. W. Schreiner, Computability and Complexity, Lecture Notes, Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Linz, Austria; http://www.risc.jku.at/people/schreine/papers/Computability2012.pdf
  81. Joachim Schröder, "Generalized Schröder Numbers and the Rotation Principle", J. Integer Sequences, Volume 10, 2007, Article 07.7.7.
  82. Joachim Schröder, The two-parameter class of Schröder inversions, Comment. Math. Univ. Carolinae 54 (2013) 5-19,
  83. A. Schuetz and G. Whieldon, Polygonal Dissections and Reversions of Series, arXiv preprint arXiv:1401.7194, 2014
  84. J. L. Schulman, The quantifier semigroup for bipartite graphs, Electronic Journal of Combinatorics, 18 (2011), #P123.
  85. A. Schulte, S. VanSchalkwyk, A. Yang, On the divisibility and valuations of the Franel numbers, in MSRI-UP Research Reports, 2014; http://www.msri.org/system/cms/files/81/files/original/Research_Reports_2014_MSRI-UP_(Single_File).pdf#page=130
  86. Andrew J. Schultz and David A. Kofke, Fifth to eleventh virial coefficients of hard spheres, Phys. Rev. E 90, 023301, 4 August 2014
  87. P. R. F. Schumacher, A left weighted Catalan extension, Integers, 10 (2010), 771-792.
  88. P. R. F. Schumacher, Parking functions and generalized Catalan numbers, Dissertation, Texas A&M University (2009).
  89. R Schumacher, Rapidly Convergent Summation Formulas involving Stirling Series, arXiv preprint arXiv:1602.00336, 2016
  90. Raphael Schumacher, Extension of Summation Formulas involving Stirling series, arXiv preprint arXiv:1605.09204, 2016
  91. T. Schwabhäuser, Preventing Exceptions to Robin's Inequality, arXiv preprint arXiv:1308.3678, 2013
  92. Schwartz, Moshe; Etzion, Tuvi, Two-dimensional cluster-correcting codes. IEEE Trans. Inform. Theory 51 (2005), no. 6, 2121-2132.
  93. Sylviane R. Schwer, Temporal Reasoning without Transitive Tables (2007), arXiv:0706.1290.
  94. Carlos Segovia, Numerical computations in cobordism categories, http://www.mathi.uni-heidelberg.de/~csegovia/Arch/sequencewords.pdf, 2013 ["It was a knock-out when after entering the sequence 2,5,15,51,187,715,... in the page OEIS, we found a great variety of different interpretations for it..."]
  95. Carlos Segovia, Counting words with vector spaces, 2013; http://www.mathi.uni-heidelberg.de/~csegovia/Arch/sequencefourapproach.pdf
  96. C. Segovia, M. Winklmeier, Combinatorial Computations in Cobordism Categories, arXiv preprint arXiv:1409.2067, 2014
  97. Carlos Segovia and Monika Winklmeier, On the density of certain languages with p^2 letters, Electronic Journal of Combinatorics 22(3) (2015), #P3.16
  98. Jaroslav Seibert and Pavel Trojovsky, "On Multiple Sums of Products of Lucas Numbers", J. Integer Sequences, Volume 10, 2007, Article 07.4.5.
  99. J. A. Sellers, Beyond Mere Convergence, PRIMUS (Problems, Resources and Issues in Mathematics Undergraduate Studies), XII, no. 2 (2002), 157-164.
  100. James A. Sellers, "Domino Tilings and Products of Fibonacci and Pell Numbers", J. Integer Sequences, Volume 5, 2002, Article 02.1.2.
  101. James A. Sellers, "Partitions Excluding Specific Polygonal Numbers As Parts", J. Integer Sequences, Volume 7, 2004, Article 04.2.4.
  102. D. Sensarma, S. S. Sarma, GMDES: A graph based modified Data Encryption Standard algorithm with enhanced security, IJRET: International Journal of Research in Engineering and Technology, Volume: 03 Issue: 03 | Mar-2014, eISSN: 2319-1163 | pISSN: 2321-7308; http://ijret.org/Volumes/V03/I03/IJRET_110303121.pdf; 2014.
  103. Seunghyun Seo and Heesung Shin, Two involutions on vertices of ordered trees, http://hshin.info/attachment/ck11.pdf
  104. S. Seo and H. Shin, Another refinement for Rooted Trees, arXiv:1106.1290, 2011.
  105. M. R. Sepanski, On Divisibility of Convolutions of Central Binomial Coefficients, Electronic Journal of Combinatorics, 21 (1) 2014, #P1.32.
  106. Seroussi, Gadiel, On universal types. IEEE Trans. Inform. Theory 52 (2006), no. 1, 171-189.
  107. Simone Severini, Universal quantum computation with unlabeled qubits (2006), arXiv:quant-ph/0601078.
  108. Simone Severini, Nondiscriminatory Propagation on Trees (2008); arXiv:0805.0181
  109. Simone Severini and Ferenc Sz\"oll\H{o}si, A further look into combinatorial orthogonality (2007), arXiv:0709.3651.
  110. Sarah Shader, Weighted Catalan Numbers and Their Divisibility Properties, Research Science Institute, MIT, 2014; http://math.mit.edu/news/summer/RSIPapers/2013Shader.pdf
  111. J. Shallit, An interesting continued fraction, Math. Mag. 48 (1975), no. 4, 207-211.
  112. J. Shallit, Rational Numbers with Non-Terminating, Non-Periodic Modified Engel-Type Expansions, Fibonacci Quarterly 31 (1993), 37-40.
  113. J. Shallit, Number theory and formal languages, in D. A. Hejhal, J. Friedman, M. C. Gutzwiller, and A. M. Odlyzko, eds., Emerging Applications of Number Theory, IMA Volumes in Mathematics and Its Applications, V. 109, Springer-Verlag, 1999, pp. 547-570.
  114. J. Shallit, Remarks on inferring integer sequences.
  115. J. Shallit, Editing an Electronic Journal, Notices Amer. Math. Soc., 62 (2015), 169-171; http://www.ams.org/notices/201502/rnoti-p169.pdf
  116. Michael Ian Shamos, Shamos’s Catalog of the Real Numbers, 2011.
  117. A. G. Shannon, Some recurrence relations for binary sequence matrices, NNTDM 17 (2011), 4, 913; http://www.nntdm.net/papers/nntdm-17/NNTDM-17-4-09-13.pdf
  118. A. G. Shannon, J. V. Leyendekkers, The Golden Ratio family and the Binet equation, Notes on Number Theory and Discrete Mathematics, Vol. 21, 2015, No. 2, 35–42
  119. Lou Shapiro, Some Open Questions about Random Walks, Involutions, Limiting Distributions, and Generating Functions, Advances in Applied Mathematics, Volume 27, Issues 2-3, August 2001, Pages 585-596.
  120. Lou Shapiro, Some open questions about random walks, involutions, limiting distributions and generating functions. Special issue in honor of Dominique Foata's 65th birthday (Philadelphia, PA, 2000). Adv. in Appl. Math. 27 (2001), no. 2-3, 585-596.
  121. Shapiro, Louis W., Bijections and the Riordan group. Random generation of combinatorial objects and bijective combinatorics. Theoret. Comput. Sci. 307 (2003), no. 2, 403-413.
  122. L. W. Shapiro and A. B. Stephens, Bootstrap percolation, the Schroeder numbers and the N-kings problem, SIAM J. Discrete Math., Vol. 4 (1991), pp. 275-280.
  123. L. W. Shapiro, C. J. Wang, A bijection between 3-Motzkin paths and Schröder paths with no peak at odd height, JIS 12 (2009) 09.3.2
  124. L. W. Shapiro and C. J. Wang, Generating identities via 2 X 2 matrices, Congressus Numerantium, 205 (2010), 33-46.
  125. L. W. Shapiro, W.-J. Woan and S. Getu, Runs, slides and moments, SIAM J. Alg. Discrete Methods, 4 (1983), 459-466.
  126. Nathaniel Shar, Experimental methods in permutation patterns and bijective proof, PhD Dissertation, Mathematics Department, Rutgers University, May 2016; https://pdfs.semanticscholar.org/98e3/71b675789ed6ec4f9c9cd82e2dee9ca79399.pdf
  127. N. Shar, D. Zeilberger, The (Ordinary) Generating Functions Enumerating 123-Avoiding Words with r Occurrences of Each of 1, 2,..., n are Always Algebraic, arXiv preprint arXiv:1411.5052, 2014
  128. R. Sharafdini, T. Doslic, Hosoya index of splices, bridges and necklaces, 2015; http://www.researchgate.net/profile/Reza_Sharafdini/publication/272355505_Hosoya_index_of_splices_bridges_and_necklaces/links/54e2f9d10cf2966637980fa7.pdf
  129. R. Sharipov, Perfect cuboids and irreducible polynomials, Arxiv preprint arXiv:1108.5348, 2011
  130. R. Sharipov, A note on the first cuboid conjecture, Arxiv preprint arXiv:1109.2534, 2011
  131. R. Sharipov, A note on the second cuboid conjecture. Part I, Arxiv preprint arXiv:1201.1229, 2012
  132. Ruslan Sharipov, Perfect cuboids and multisymmetric polynomials, Arxiv preprint arXiv:1205.3135, 2012
  133. R. Sharipov, On an ideal of multisymmetric polynomials associated with perfect cuboids, arXiv:1206.6769, 2012
  134. R. Sharipov, On the equivalence of cuboid equations and their factor equations, arXiv:1207.2102, 2012
  135. R. Sharipov, A biquadratic Diophantine equation associated with perfect cuboids, Arxiv preprint arXiv:1207.4081, 2012
  136. R. Sharipov, On a pair of cubic equations associated with perfect cuboids, Arxiv preprint arXiv:1208.0308, 2012.
  137. R. Sharipov, On two elliptic curves associated with perfect cuboids, Arxiv preprint arXiv:1208.1227, 2012
  138. R. Sharipov, A note on solutions of the cuboid factor equations, Arxiv preprint arXiv:1209.0723, 2012
  139. R. Sharipov, A note on rational and elliptic curves associated with the cuboid factor equations, arXiv:1209.5706, 2012
  140. Ruslan Sharipov, Asymptotic estimates for roots of the cuboid characteristic equation in the linear region, preprint arXiv:1505.02745, 2015. (A031173, A031174, A031175)
  141. Ruslan Sharipov, Reverse asymptotic estimates for roots of the cuboid characteristic equation in the case of the second cuboid conjecture, preprint arXiv:1505.00724, 2015. (A031173, A031174, A031175 )
  142. Ruslan Sharipov, A note on invertible quadratic transformations of the real plane, arXiv preprint arXiv:1507.01861, 2015
  143. A. Sharov, R. M. Roth, New upper bounds for grain-correcting and grain-detecting codes, in Proc. Internat. Sympos. Information Theory (ISIT), 2014; http://www.cs.technion.ac.il/~sharov/Publications/ISIT-2014.pdf
  144. Mark Shattuck, "Bijective Proofs of Parity Theorems for Partition Statistics", J. Integer Sequences, Volume 8, 2005, Article 05.1.5.
  145. Mark A. Shattuck, Tiling proofs of some formulas for the Pell numbers of odd index, Integers, 9 (2009), 53-64.
  146. Mark A. Shattuck, Proofs of some binomial identities using the method of least squares, Fib. Q., 48 (2010), 290-297.
  147. Mark Shattuck, Convolution identities for Stirling numbers of the first kind via involution, INTEGERS, 12, 2012, #A59.
  148. M. Shattuck, Combinatorial proofs of determinant formulas for the Fibonacci and Lucas polynomials, Fib. Q., 51 (2013), 63-71.
  149. M. Shattuck, On the zeros of some polynomials with combinatorial coefficients, Annales Mathematicae et Informaticae, 42 (2013) pp. 93-101, http://ami.ektf.hu.
  150. M. Shattuck, Combinatorial proofs of some Bell number formulas, arXiv preprint arXiv:1401.6588, 2014
  151. M. Shattuck, Combinatorial Proofs of Some Formulas for Triangular Tilings, Journal of Integer Sequences, 17 (2014), #14.5.5.
  152. M. Shattuck, Combinatorial identities for incomplete tribonacci polynomials, arXiv preprint arXiv:1406.2755, 2014.
  153. M. Shattuck, Generalized r-Lah numbers, arXiv preprint arXiv:1412.8721, 2014
  154. Mark Shattuck, Combinatorial proofs of some Stirling number formulas, Preprint (ResearchGate), 2014.
  155. Mark A. Shattuck and Carl G. Wagner, "Parity Theorems for Statistics on Lattice Paths and Laguerre Configurations", J. Integer Sequences, Volume 8, 2005, Article 05.5.1.
  156. Mark A. Shattuck and Carl G. Wagner, "Periodicity and Parity Theorems for a Statistic on r-Mino Arrangements", J. Integer Sequences, Volume 9, 2006, Article 06.3.6.
  157. Mark A. Shattuck and Carl G. Wagner, "Some Generalized Fibonacci Polynomials", J. Integer Sequences, Volume 10, 2007, Article 07.5.3.
  158. Kennan Shelton and Michael Siler, Variations of a Coin-Removal Problem (2004), arXiv:math/0411052.
  159. Zhizhang Shen, Ke Qiu and Eddie Cheng, On the surface area of the (n,k)-star graph, Theoretical Computer Science, 2009.
  160. Rick L. Shepherd, Binary quadratic forms and genus theory, Master of Arts Thesis, University of North Carolina at Greensboro, 2013; http://libres.uncg.edu/ir/uncg/f/Shepherd_uncg_0154M_11099.pdf
  161. Michael A. Sherbon, "Fundamental Nature of the Fine-Structure Constant," International Journal of Physical Research, 3, 2(1):1-9 (2014).
  162. Vladimir Shevelev, A Conjecture on Primes and a Step towards Justification (2007), arXiv:0706.0786.
  163. Vladimir Shevelev, On the Basis Polynomials in the Theory of Permutations with Prescribed Up-Down Structure, arXiv:math.CO/0801.0072
  164. Vladimir Shevelev, On Connection between the Numbers of Permutations and Full Cycles with Some Restrictions on Positions and Up-Down Structure arXiv:math.CO/0803.2396
  165. Vladimir Shevelev, On Unique Additive Representations of Positive Integers and Some Close Problems (2008); arXiv:0811.0290
  166. Vladimir Shevelev, Process of "Primoverization" of Numbers of the Form a^n-1 (2008); arXiv:0807.2332
  167. Vladimir Shevelev, An Upper Estimate for the Overpseudoprime Counting Function (2008); arXiv:0807.1975
  168. Vladimir Shevelev, Overpseudoprimes, Mersenne Numbers and Wieferich primes (2008); arXiv:0806.3412
  169. Vladimir Shevelev, Binary Additive Problems: Theorems of Landau and Hardy-Littlwood Type (2009) arXiv:0902.1046
  170. Vladimir Shevelev, Binary Additive Problems: Recursions for Numbers of Representations (2009) arXiv:0901.3102
  171. Vladimir Shevelev, On critical small intervals containing primes, arXiv:0908.2319 [math.NT]
  172. Vladimir Shevelev, The menage problem with a known mathematician, arXiv:1101.5321 [math.CO]
  173. Vladimir Shevelev, SPECTRUM OF PERMANENTS VALUES AND ITS EXTREMAL MAGNITUDES ..., Arxiv preprint arXiv:1104.4051, 2011.
  174. V. Shevelev, Combinatorial minors of matrix functions and their applications, Arxiv preprint arXiv:1105.3154, 2011
  175. Shevelev, Vladimir Binomial coefficient predictors. J. Integer Seq. 14 (2011), no. 2, Article 11.2.8, 8 pp.
  176. Vladimir Shevelev, Ramanujan and Labos Primes, Their Generalizations, and Classications of Primes, J. Integer Sequences, 15 (2012), #12.1.1.
  177. Vladimir Shevelev, The number of permutations with prescribed up-down structure as a function of two variables, INTEGERS, 12 (2012), #A1.
  178. Vladimir Shevelev, Representation of positive integers by the form x1...xk + x1 + ... + xk, arXiv:1508.03970, 2015
  179. Vladimir Shevelev, Representation of positive integers by the form x^3+y^3+z^3-3xyz, arXiv:1508.05748, 2015
  180. V. Shevelev, Exponentially S-numbers, preprint arXiv:1510.05914, 2015
  181. V. Shevelev, Set of all densities of exponentially S-numbers, arXiv preprint arXiv:1511.03860, 2015
  182. Vladimir Shevelev, <a href="http://arxiv.org/abs/1603.04434">Two analogs of Thue-Morse sequence</a>, arXiv:1603.04434 [math.NT], 2016.
  183. V Shevelev, A fast computation of density of exponentially S-numbers, arXiv preprint arXiv:1602.04244, 2016
  184. V Shevelev, Two analogs of Thue-Morse sequence, arXiv preprint arXiv:1603.04434, 2016
  185. Vladimir Shevelev, On Erdos's constant, arXiv preprint arXiv:1605.08884, 2016
  186. Vladimir Shevelev, Gilberto Garcia-Pulgarin, Juan Miguel Velasquez-Soto and John H. Castillo, Overpseudoprimes, and Mersenne and Fermat numbers as primover numbers, Arxiv preprint arXiv:1206:0606, 2012
  187. V. Shevelev, C. R. Greathouse IV and P. J. C. Moses, On intervals (kn,(k+1)n) containing a prime for all n>1, arXiv:1212.2785, 2012; Journal of Integer Sequences, Vol. 16 (2013), Article 13.7.3.
  188. VLADIMIR SHEVELEV AND PETER J. C. MOSES, On a sequence of polynomials with hypothetically integer coefficients, arXiv:1112.5715, 2011; INTEGERS, 13 (2013), #A9.
  189. VLADIMIR SHEVELEV AND PETER J. C. MOSES, Tangent power sums and their applications, Arxiv preprint arXiv:1207.0404, 2012
  190. V. Shevelev and P. J. C. Moses, A family of digit functions with large periods, arXiv:1209.5705, 2012
  191. Jessica Shi, Enumeration of unlabeled graph classes: A study of tree decompositions and related approaches, 2015, https://pdfs.semanticscholar.org/c264/67cd4a5f0adee094d7c19fd8a08a78b46793.pdf
  192. Zheng Shi, Impurity entropy of junctions of multiple quantum wires, arXiv preprint arXiv:1602.00068, 2016
  193. Zheng Shi, I Affleck, A fermionic approach to tunneling through junctions of multiple quantum wires, arXiv preprint arXiv:1601.00510, 2016
  194. S. A. Shirali, Case Studies in Experimental Mathematics, 2013; http://atcm.mathandtech.org/EP2013/invited_papers/3612013_20372.pdf
  195. Ilya Shlyakhter, Generating effective symmetry-breaking predicates for search problems, Electronic Notes in Discrete Mathematics, Volume 9, June 2001, Pages 19-35.
  196. I. Shlyakhter, Generating effective symmetry-breaking predicates for search problems, Discrete Appl. Math. 155 (2007), no. 12, 1539-1548.
  197. Z. Shomanov, Combinatorial formula for the partition function, arXiv:1508.03173 (2015)
  198. Igor E. Shparlinski, "On the Sum of Iterations of the Euler Function", J. Integer Sequences, Volume 9, 2006, Article 06.1.6.
  199. I. Shpitser, R. J. Evans, T. S. Richardson, J. M. Robins, Introduction to nested Markov models, Behaviormetrika, Behaviormetrika Vol. 41, No. 1, 2014, 3-39.
  200. I. Shpitser, T. S. Richardson, J. M. Robins and R. Evans, Parameter and Structure Learning in Nested Markov Models, arXiv:1207.5058, 2012
  201. Punit Shrivastava, Exploring Jacobsthal and Jacobsthal-Lucas numbers on complex plane, American Journal of Mathematics and Mathematical Sciences, Volume 2, No. 1, January-June 2013, Pp. 87-90; http://www.academicresearchjournals.com/serialjournalmanager/pdf/1422441774.pdf
  202. Walter Shur, "Two Game-Set Inequalities", J. Integer Sequences, Volume 6, 2003, Article 03.4.1.
  203. SIAM News, Recognitions ["The numbers that came out were 4, 28, 232, 2092, 19864, . . . and we couldn't see a pattern. In desperation, we sent them to superseeker@research.att.com (now superseeker@oeis.org) (a miracle program created by Neil Sloane). ..."]
  204. Irfan Siap and I. Aydoglu, Counting the generator matrices of Z_2 Z_8 codes, arXiv:1303.6985
  205. M. Siebers and U. Schmid, Semi-analytic Natural Number Series Induction, in KI 2012: Advances in Artificial Intelligence, Lecture Notes in Computer Science Volume 7526, 2012, pp 249-252.
  206. Aaron N. Siegel, Mis\`ere canonical forms of partizan games (2007), arXiv:math/0703565.
  207. J. A. Siehler, The Finite Lamplighter Groups: A Guided Tour, College Mathematics Journal, Vol. 43, No. 3 (May 2012), pp. 203-211
  208. F. Sievers, G. M. Hughes, D. G. Higgins, Systematic Exploration of Guide-Tree Topology Effects for Small Protein Alignments, BMC Bioinformatics 2014, 15:338; http://www.biomedcentral.com/1471-2105/15/338
  209. Markus Sigg, On a conjecture of John Hoffman regarding sums of palindromic numbers, arXiv preprint arXiv:1510.07507, 2015
  210. John K. Sikora, On the High Water Mark Convergents of Champernowne's Constant in Base Ten, arXiv:1210.1263, 2012
  211. J. K. Sikora, Analysis of the High Water Mark Convergents of Champernowne's Constant in Various Bases, arXiv preprint arXiv:1408.0261, 2014
  212. A. V. Sills and H. Wang, On the maximal Wiener index and related questions, Discrete Applied Mathematics, Volume 160, Issues 10-11, July 2012, Pages 1615-1623.
  213. J. R. Silvester, Factorial Factors, Maths. Gazette 88 (2004) 119-123..
  214. R. Simion, Combinatorial statistics on type-B analogues of noncrossing partitions and restricted permutations, The Electronic Journal of Combinatorics, Volume 7(1), 2000, R#9.
  215. Frank Simon, Algebraic Methods for Computing the Reliability of Networks, Dissertation, Doctor Rerum Naturalium (Dr. rer. nat.), Fakultät Mathematik und Naturwissenschaften der Technischen Universität Dresden, http://www.qucosa.de/fileadmin/data/qucosa/documents/10115/DissertationFrankSimon.pdf, 2012.
  216. Jamie Simpson, Modified Padovan words and the maximum number of runs in a word, Australasian J. Combinat. xx (2009)
  217. T. Simpson, Permutations with unique fixed and reflected points. Ars Combin. 39 (1995), 97-108.
  218. A. K. Singh, A. Das and A. Kumar, RAPIDITAS: RAPId Design-space-exploration Incorporating Trace-based Analysis and Simulation, 2013; http://www.ece.nus.edu.sg/stfpage/eleak/pdf/dsd-2013-amit.pdf
  219. Amit Kumar Singh, Akash Kumar and Thambipillai Srikanthan, Accelerating Throughput-aware Run-time Mapping for Heterogeneous MPSoCs, ACM Transactions on Design Automation of Electronic Systems, 2012, http://www.ece.nus.edu.sg/stfpage/eleak/pdf/akumar_todaes_2012.pdf.
  220. A. K. Singh, A. Kumar, J. Wu and T. Srikanthan, CADSE: communication aware design space exploration for efficient run-time MPSoC management, Frontiers of Computer Science, Volume 7, Issue 3 , pp. 416-430.
  221. Singh, Jitender On an arithmetic convolution. J. Integer Seq. 17 (2014), no. 6, Article 14.6.7, 13 pp.
  222. John R. Singler, Transition to turbulence, small disturbances, and sensitivity analysis II: The NavierStokes equations, Journal of Mathematical Analysis and Applications, Volume 337, Issue 2, 15 January 2008, Pages 1442-1456.
  223. D. Singmaster, Triangles with integer sides and sharing barrels, College Math. J. 21 (1990) 278-285.
  224. G. Siudem, A. Fronczak, P. Fronczak, Exact low-temperature series expansion for the partition function of the two-dimensional zero-field s= 1/2 Ising model on the infinite square lattice, arXiv preprint arXiv:1410.7963, 2014
  225. S. Sivasubramanian, Signed Excedance Enumeration in the Hyperoctahedral group, El. J. Combinat. 21 (2) (2014) # P2.10
  226. J.-M. Sixdeniers, K. A. Penson and A. I. Solomon, "Extended Bell and Stirling Numbers From Hypergeometric Exponentiation", J. Integer Sequences, Volume 4, 2001, Article 01.1.4.
  227. Jonas Sjostrand, Bruhat intervals as rooks on skew Ferrers boards (2006), arXiv:math/0601615.
  228. Matthew Skala, Graph Nimors, arXiv preprint arXiv:1604.04072, 2016
  229. Z. Skupien, Sums of Powered Characteristic Roots Count Distance-Independent Circular Sets, Discussiones Mathematicae Graph Theory. Volume 33, Issue 1, Pages 217-229, ISSN (Print) 2083-5892, doi:10.7151/dmgt.1658, April 2013.
  230. Z. Skupien, A. Zak, Pair-sums packing and rainbow cliques, in TOPICS IN GRAPH THEORY, A tribute to A. A. and T. E. Zykovs on the occasion of A. A. Zykov's 90th birthday, ed. R. Tyshkevich, Univ. Illinois, 2013, pages 131-144; http://www.math.uiuc.edu/~kostochk/Zykov90-Topics_in_Graph_Theory.pdf
  231. Paul B. Slater, Eigenvalues, Separability and Absolute Separability of Two-Qubit States (2008); arXiv:0805.0267
  232. Paul B. Slater, Hypergeometric/Difference-Equation-Based Separability Probability Formulas and Their Asymptotics for Generalized Two-Qubit States Endowed with Random Induced Measure, preprint arXiv:1504.04555, 2015. (A004523, A232007)
  233. Richard M. Slevinsky, On the use of Hahn's asymptotic formula and stabilized recurrence for a fast, simple, and stable Chebyshev-Jacobi transform, arXiv preprint arXiv:1602.02618, 2016
  234. Arkadii Slinko, Algebra for Applications: Cryptography, Secret Sharing, Error-Correcting, Fingerprinting, Compression, Springer 2015.
  235. N. J. A. Sloane, The Sphere Packing Problem, Proceedings Internat. Congress Math. Berlin 1998, Documenta Mathematika, III (1998), pp. 387-396. (postscript, pdf)
  236. N. J. A. Sloane, My Favorite Integer Sequences, in Sequences and their Applications (Proceedings of SETA '98), C. Ding, T. Helleseth and H. Niederreiter (editors), Springer-Verlag, London, 1999, pp. 103-130.
  237. N. J. A. Sloane, On Single-Deletion Correcting Codes, in K. T. Arasu and A. Seress, eds., Codes and Designs, Ohio State University, May 2000 (Ray-Chaudhuri Festschrift), Walter de Gruyter, Berlin, 2002, pp. 273-291.
  238. N. J. A. Sloane, The Sphere-Packing Problem (2002), arXiv:math/0207256.
  239. N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences (2003), arXiv:math/0312448; Notices Amer. Math. Soc., 50 (September 2003), pp. 912-915.
  240. N. J. A. Sloane, arXiv:0912.2394 Seven Staggering Sequences.
  241. N. J. A. Sloane, Gleason's theorem on self-dual codes and its generalizations (talk given at Conference on Algebraic Combinatorics in honor of Eiichi Bannai, Sendai, Japan, June 2006).
  242. N. J. A. Sloane, Eight Hateful Sequences, arXiv:0805.2128 (2008)
  243. N. J. A. Sloane, 2178 And All That, http://NeilSloane.com/doc/selma.pdf
  244. N. J. A. Sloane, 2178 And All That, Video of talk given in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Oct. 10 2013: <a href="https://vimeo.com/76725343">Part 1</a>, <a href="https://vimeo.com/77255410">Part 2</a>.
  245. N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168, 2015
  246. N. J. A. Sloane and Parthasarathy Nambi, Integer Sequences Related to Chemistry, [pdf], Poster presented at the Amer. Chem. Soc. National Meeting, San Francisco, Fall 2006.
  247. N. J. A. Sloane and J. A. Sellers, arXiv:math.CO/0312418 On non-squashing partitions], Discrete Math., 294 (2005), no. 3, 259-274.
  248. N. J. A. Sloane and Thomas Wieder, arXiv:math.CO/0307064 The Number of Hierarchical Orderings], arXiv:math.CO/0307064
  249. N. J. A. Sloane and Thomas Wieder, doi:10.1007/s11083-004-9460-9 The Number of Hierarchical Orderings, Order 21 (2004), no. 1, 83-89.
  250. Slomczynska, Katarzyna Free spectra of linear equivalential algebras. J. Symbolic Logic 70 (2005), no. 4, 1341-1358.
  251. Michael Small, C.K. Tse, David M. Walker, Super-spreaders and the rate of transmission of the SARS virus, Physica D: Nonlinear Phenomena, Volume 215, Issue 2, 15 March 2006, Pages 146-158.
  252. F. Smarandache, arXiv:math.GM/0010137 Another Set of Sequences, Sub-Sequences and Sequences of Sequences, Partially published in "Only Problems, Not Solutions!", by Florentin Smarandache, Xiquan Publ. Hse., Phoenix, 1991.
  253. F. Smarandache, arXiv:math.GM/0010132 Considerations on New Functions in Number Theory, Partially inlcuded in the book "Noi Functii in Teoria Numerelor", by Florentin Smarandache, University of Kishinev Press, 120 p., 1999.
  254. F. Smarandache, arXiv:math.GM/0010125 A Set of Sequences in Number Theory], Presented to the Pedagogical High School Student Conference in Craiova, 1972. "Collected Papers", Vol. II, book by Florentin Smarandache, University of Kishinev Press, Kishinev, 200 p., 1997.
  255. F. Smarandache, arXiv:math.GM/0010151 G Add-On, Digital, Sieve, General Periodical and Non-Arithmetic Sequences.
  256. Florentin Smarandache, Numerology (2000), arXiv:math.GM/0010132.
  257. Florentin Smarandache, Sequences of Numbers Involved in Unsolved Problems (2006), arXiv:math.GM/0604019.
  258. F. Smarandache, Generalization and alternatives of Kaprekar's routine, arXiv:1005.3235
  259. Florentin Smarandache, Jean Dezert, An Introduction to the DSm Theory for the Combination of Paradoxical, Uncertain and Imprecise Sources of Information (2006), arXiv:cs/0608002.
  260. Florentin Smarandache, Jean Dezert, The Combination of Paradoxical, Uncertain and Imprecise Sources of Information based on DSmT and Neutro-Fuzzy Inference, arXiv:cs/0412091 (2004)
  261. Jason P. Smith, A Formula for the Mobius function of the Permutation Poset Based on a Topological Decomposition, arXiv preprint arXiv:1506.04406, 2015
  262. K. W. Smith, KWSnet Mathematics Index, 2015; http://www.kwsnet.com/science-mathematics.html
  263. Barry R. Smith, Reducing quadratic forms by kneading sequences, J. Int. Seq. 17 (2014) 14.11.8.
  264. R. Smith and V. Vatter, A stack and a pop stack in series, arXiv preprint arXiv:1303.1395, 2013
  265. V. N. Smith and L. Shapiro, Catalan numbers, Pascal's triangle and mutators, Congressus Numerant., 205 (2010), 187-197.
  266. C. Smyth, The terms in Lucas sequences divisible by their indices, J. Int. Seq. 13 (2010) 10.2.4
  267. Snellman, Jan, Standard paths in another composition poset. Electron. J. Combin. 11 (2004), no. 1, Research Paper 76, 8 pp.
  268. Jan Snellman, Digraphs with a fixed number of edges and vertices, having a maximal number of walks of length 2 (2008); arXiv:0804.4655
  269. Jan Snellman and Michael Paulsen, "Enumeration of Concave Integer Partitions", J. Integer Sequences, Volume 7, 2004, Article 04.1.3.
  270. Aaron Snook, Augmented Integer Linear Recurrences, http://www.cs.cmu.edu/afs/cs/user/mjs/ftp/thesis-program/2012/theses/snook.pdf, 2012.
  271. D. R. Snow, Problems and Remarks, 18th International Symposium on Functional Equations, 1980, Remark 18. (ps, pdf)
  272. E. V. K. Sobolev, A survey of the cell-growth problem and some its variations, preprint, Mar. 2001.
  273. Joram Soch, Expressing the Indefinite Integral of the Standard Normal Probability Density Function, arXiv preprint arXiv:1512.04858, 2015
  274. Edwin Soedarmadji, Latin hypercubes and MDS codes, Discrete Mathematics, Volume 306, Issue 12, 28 June 2006, Pages 1232-1239.
  275. Anthony Sofo, Fibonacci and Some of His Relations
  276. A. D. Sokal, The leading root of the partial theta function, arXiv:1106.1003, 2011.
  277. Patrick Sole and Michel Planat, THE ROBIN INEQUALITY FOR 7-FREE INTEGERS, INTEGERS, 2011, #A65; http://www.emis.de/journals/INTEGERS/papers/l65/l65.pdf
  278. Allan I. Solomon, Gerard Duchamp, Pawel Blasiak et al., Normal Order: Combinatorial Graphs (2004), arXiv:quant-ph/0402082.
  279. A. I. Solomon, C.-L. Ho and G. H. E. Duchamp, Degrees of entanglement for multipartite systems, Arxiv preprint arXiv:1205.4958, 2012
  280. N. Solomon, S. Solomon, A natural extesion of Catalan numbers, JIS 11 (2008) 08.3.5.
  281. Steven E. Sommars and Tim Sommars, "The Number of Triangles Formed by Intersecting Diagonals of a Regular Polygon", J. Integer Sequences, Volume 1, 1998, Article 98.1.5.
  282. Michael Somos, A Multisection of q-Series, http://cis.csuohio.edu/~somos/multiq.pdf (A007325, A108483, A058531)
  283. Michael Somos, A Remarkable eta-product Identity, http://cis.csuohio.edu/~somos/retaprod.html (A143751, A058728)
  284. Jonathan Sondow, New Vacca-Type Rational Series for Euler's Constant and Its "Alternating" Analog ln(4/Pi) (2005), arXiv:math.NT/0508042.
  285. Sondow, Jonathan, A geometric proof that e is irrational and a new measure of its irrationality. Amer. Math. Monthly 113 (2006), no. 7, 637-641.
  286. Jonathan Sondow, Which Partial Sums of the Taylor Series for e are Convergents to e? (and a Link to the Primes 2, 5, 13, 37, 463, ...) with an Appendix by Kyle Schalm (2007), arXiv:0709.0671.
  287. Jonathan Sondow, Ramanujan primes and Bertrand's postulate, Amer. Math. Monthly, 116 (2009), 630-635.
  288. Sondow, Jonathan; and Hadjicostas, Petros, The generalized-Euler-constant function gamma(z) and a generalization of Somos's quadratic recurrence constant. J. Math. Anal. Appl. 332 (2007), no. 1, 292-314.
  289. J. Sondow and K. MacMillan, Primary pseudoperfect numbers, arithmetic progressions, and the Erdos-Moser equation, Amer. Math. Monthly, 124 (2017)232-240.
  290. J. Sondow, J. W. Nicholson and T. D. Noe, Ramanujan Primes: Bounds, Runs, Twins, and Gaps, Arxiv preprint arXiv:1105.2249, 2011. J. Integer Seq. 14 (2011) Article 11.6.2.
  291. J. Sondow, E. Tsukerman, The p-adic Order of Power Sums, the Erdos-Moser Equation, and Bernoulli Numbers, arXiv preprint arXiv:1401.0322, 2014
  292. H.-Y. Song and J. B. Lee, On (n,k)-sequences, Discrete Appl. Math. 105, No.1-3, 183-192 (2000).
  293. Eric Sopena, i-Mark: A new subtraction division game, arXiv:1509.04199, 2015
  294. Henrik Kragh Sørensen, “The End of Proof”? The Integration of Different Mathematical Cultures as Experimental Mathematics Comes of Age, in Mathematical Cultures, pp 139-160 (2016); DOI: 10.1007/978-3-319-28582-5_9
  295. J. Sorenson, J. Webster, Strong pseudoprimes to twelve prime bases, arXiv:1509.00864. See first page.
  296. Christophe Soulé, <a href="https://vimeo.com/100212123">Le triangle de Pascal et ses propriétés</a>, Lecture, Soc. Math. de France, Feb 13 2008.
  297. Richard Southwell and Jianwei Huang, Complex Networks from Simple Rewrite Systems, Arxiv preprint arXiv:1205.0596, 2012
  298. C. A. Souza-Filho, A. F. Macedo-Junior, A. M. S. Macedo, A hypergeometric generating function approach to charge counting statistics in ballistic chaotic cavities, J. Phys. A: Math. Theor. 47 (2014); 105102 doi:10.1088/1751-8113/47/10/105102.
  299. S. Spasovski and A. M. Bogdanova, Optimization of the Polynomial Greedy Solution for the Set Covering Problem, 2013, 10th Conference for Informatics and Information Technology (CIIT 2013), PDF
  300. Sam E. Speed, "The Integer Sequence A002620 and Upper Antagonistic Functions", J. Integer Sequences, Volume 6, 2003, Article 03.1.4.
  301. Lukas Spiegelhofer and Michael Wallner, Divisibility of binomial coefficients by powers of primes, arXiv preprint arXiv:1604.07089, 2016
  302. Michael Z. Spivey, Combinatorial sums and finite differences, Discrete Mathematics, Volume 307, Issue 24, 28 November 2007, Pages 3130-3146.
  303. M. Z. Spivey, A generalized recurrence for Bell Numbers, JIS 11 (2008) 08.2.5
  304. Michael Z. Spivey, Staircase rook polynomials and Cayley's game of Mousetrap, European Journal of Combinatorics, Volume 30, Issue 2, February 2009, Pages 532-539.
  305. Michael Z. Spivey and Laura L. Steil, "The k-Binomial Transforms and the Hankel Transform", J. Integer Sequences, Volume 9, 2006, Article 06.1.1.
  306. R. Sprugnoli, Moments of Reciprocals of Binomial Coefficients, Journal of Integer Sequences, 14 (2011), #11.7.8.
  307. R. Sprugnoli, Alternating Weighted Sums of Inverses of Binomial Coefficients, J. Integer Sequences, 15 (2012), #12.6.3.
  308. V. V. Srinivas and B. R. Shankar, Integer Complexity: Breaking the Theta(n^2) barrier, World Academy of Science, Engineering and Technology, Vol. 17, 2008-05-27; http://www.waset.org/Publications/integer-complexity-breaking-the-%C3%8E%C2%B8-n2-barrier/6770
  309. Anitha Srinivasan and John W. Nicholson, An improved upper bound for Ramanujan primes, Integers, 15 (2015), #A52.
  310. Hermann Stamm-Wilbrandt, The On-Line Encyclopedia of Integer Sequences (OEIS) gets 50, Blog Posting, 2014, https://www.ibm.com/developerworks/community/blogs/HermannSW/entry/the_on_line_encyclopedia_of_integer_sequences_oeis_gets_50?lang=en
  311. Pantelimon Stanica, p^q-Catalan Numbers and Squarefree Binomial Coefficients (2000), arXiv:math/0010148.
  312. R. P. Stanley, Hipparchus, Plutarch, Schroeder and Hough, American Mathematical Monthly 104 (1997), 344-350.
  313. Richard P. Stanley, "The Descent Set and Connectivity Set of a Permutation", J. Integer Sequences, Volume 8, 2005, Article 05.3.8.
  314. R. P. Stanley, An Equivalence Relation on the Symmetric Group and Multiplicity-free Flag h-Vectors, PDF
  315. R. P. Stanley and F. Zanello, Unimodality of partitions with distinct parts inside Ferrers shapes, http://www-math.mit.edu/~rstan/papers/distinctparts.pdf, 2013
  316. R. P. Stanley, F. Zanello, The Catalan case of Armstrong's conjecture on core partitions, arXiv preprint arXiv:1312.4352, 2013
  317. R. P. Stanley, F. Zanello, Some asymptotic results on q-binomial coefficients, http://www-math.mit.edu/~rstan/papers/qbc.pdf, 2014.
  318. David Stanovský, A guide to self-distributive quasigroups, or latin quandles, preprint arXiv:1505.06609, 2015. (A000712, A057771, A181769, some not yet included)
  319. David Stanovský, Petr Vojtechovský, <a href="http://arxiv.org/abs/1511.03534">Central and medial quasigroups of small order</a>, arxiv preprint arXiv:1511.03534 [math.GR], 2015.
  320. Stees, Ryan, "Sequences of Spiral Knot Determinants" (2016). Senior Honors Projects. Paper 84. James Madison Univ., May 2016; http://commons.lib.jmu.edu/cgi/viewcontent.cgi?article=1043&context=honors201019
  321. P. R. Stein and M. S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers, Discrete Math., 26 (1979), 261-272.
  322. P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31.
  323. Stefan Steinerberger, A hidden signal in the Ulam sequence, Research Report YALEU/DCS/TR-1508, Yale University, 2015. (A002858). Also arXiv preprint arXiv:1507.00267, 2015.
  324. Bertran Steinsky, "A Recursive Formula for the Kolakoski Sequence A000002", J. Integer Sequences, Volume 9, 2006, Article 06.3.7.3
  325. B. von Stengel, New maximal numbers of equilibria in bimatrix games, Discrete and Computational Geometry 21 (1999), 557-568.
  326. Allen Stenger, Experimental Math for Math Monthly Problems, Amer. Math. Monthly, 124 (2017), 116-131.
  327. C. Stenson, Weighted voting, threshold functions, and zonotopes, in The Mathematics of Decisions, Elections, and Games, Volume 625 of Contemporary Mathematics Editors Karl-Dieter Crisman, Michael A. Jones, American Mathematical Society, 2014, ISBN 0821898663, 9780821898666
  328. F. Stephan, Degrees of Computing and Learning, Habilitationsschrift an der Universitaet Heidelberg. Ueberarbeitete Version veroeffentlicht als Forschungsberichte Mathematische Logik 46 / 1999, Mathematisches Institut, Universitaet Heidelberg, Heidelberg, 1999.
  329. F. Stephan, On the structures inside truth-table degrees. J. Symbolic Logic 66 (2001), no. 2, 731-770. (Only the printed version mentions the On-Line Encyclopedia of Integer Sequences.)
  330. R. Stephan, Divide-and-conquer generating functions. Part I. Elementary sequences, 2003. arXiv:math.CO/0307027
  331. R. Stephan, arXiv:math.CO/0305348 On a sequence related to the Josephus problem], 2003.
  332. Ralf Stephan, Prove or Disprove. 100 Conjectures from the OEIS (2004), arXiv:math/0409509.
  333. T. Stephen and T. Yusun, Counting inequivalent monotone Boolean functions, arXiv preprint arXiv:1209.4623, 2012
  334. Stevanovic, Dragan; de Abreu, Nair M. M.; de Freitas, Maria A. A.; Del-Vecchio, Renata, Walks and regular integral graphs. Linear Algebra Appl. 423 (2007), no. 1, 119-135.
  335. Gary E. Stevens, "A Connell-Like Sequence", J. Integer Sequences, Volume 1, 1998, Article 98.1.4.
  336. David I. Stewart, arXiv:1101.3004 Unbounding Ext [math.RT]
  337. J. F. Stilck and R. M. Brum, Reversible limit of processes of heat transfer, arXiv preprint arXiv:1303.2911, 2013
  338. Paul K. Stockmeyer, The Pascal Rhombus and the Stealth Configuration, preprint arXiv:1504.04404, 2015. (A001045, A055099, A256959, A000302)
  339. Paul K. Stockmeyer, An Exploration of Sequence A000975, Preprint, August 2016; also http://arxiv.org/abs/1608.08245
  340. A. Stoimenow, On enumeration of chord diagrams and asymptotics of Vassiliev invariants, FU Berlin Digitale Dissertation (1999).
  341. A. Stoimenow, Wheel graphs, Lucas numbers and the determinant of a knot, Max Planck Institut-Oberseminar, 30/3/2000.
  342. A. Stoimenow, Graphs, determinants of knots and hyperbolic volume, preprint.
  343. Stoimenow, A. On the number of chord diagrams. Discrete Math. 218 (2000), no. 1-3, 209-233.
  344. A. Stoimenow, arXiv:math.GT/0210174 , Generating functions, Fibonacci numbers and rational knots, 2002, J. Algebra 310 (2007), no. 2, 491-525.
  345. A. Stoimenow. On the crossing number of positive knots and braids and braid index criteria of Jones and Morton-Williams-Franks. Trans. Amer. Math. Soc. 354 (2002) 3927-3954.
  346. Stoimenow, A., Square numbers, spanning trees and invariants of achiral knots. Comm. Anal. Geom. 13 (2005), no. 3, 591-631.
  347. A Stoimenow, A theorem on graph embedding with a relation to hyperbolic volume, Combinatorica, October 2016, Volume 36, Issue 5, pp 557–589
  348. T. Stojadinovic The Catalan numbers,, Preprint 2015; https://www.researchgate.net/profile/Tanja_Stojadinovic2/publication/281062823_The_Catalan_numbers/links/55d3022008ae7fb244f56e70.pdf
  349. D. Stolee, Isomorph-free generation of 2-connected graphs with applications, Arxiv preprint arXiv:1104.5261, 2011
  350. M. Stoll, Chabauty without the Mordell-Weil group, arXiv preprint arXiv:1506.04286, 2015
  351. Th. Stoll, "On Families of Nonlinear Recurrences Related to Digits", J. Integer Sequences, Volume 8, 2005, Article 05.3.2.
  352. Stoll, Thomas, On a problem of Erdos and Graham concerning digits. Acta Arith. 125 (2006), no. 1, 89-100.
  353. Th. Stoll, On Hofstadter's married functions, Fib. Q., 46/47 (2008/2009), 62-67.
  354. Thomas Stoll, A fancy way to obtain the binary digits of 759250125 sqrt{2} (2009) arXiv:0902.4168, Amer. Math. Monthly, 117 (2010), 611-617.
  355. Thomas Stoll, On digital blocks of polynomial values and extractions in the Rudin–Shapiro sequence, RAIRO - Theoretical Informatics and Applications (RAIRO: ITA), EDP Sciences, 2016, 50, pp. 93-99. <hal-01278708>.
  356. D. S. Stones, arXiv:0908.2166 On prime chains [math.NT]
  357. D. S. Stones, The many formulae for the number of Latin rectangles, Electron. J. Combin 17 (2010), A1.
  358. D. S. Stones, The pariy of the number of quasigroups, Discr. Math., 310 (2010), 3033-3039.
  359. D. S. Stones and I. M. Wanless, Compound orthomorphisms of the cyclic group, Finite Fields Appl. 16 (2010), 277--289.
  360. D. S. Stones and I. M. Wanless, Divisors of the number of Latin rectangles, J. Combin. Theory Ser. A 117 (2010), 204--215.
  361. RJ Stones, S Lin, X Liu, G Wang, On Computing the Number of Latin Rectangles, Graphs and Combinatorics, Graphs and Combinatorics (2016) 32:1187–1202; DOI 10.1007/s00373-015-1643-1
  362. George Story, Counting Maximal Chains in Weighted Voting Posets, Rose-Hulman Undergraduate Mathematics Journal, Vol. 14, No. 1, 2013.
  363. B. D. Stosic, T. Stosic, I. P. Fittipaldi and J. J. P. Veerman, Residual entropy of the square Ising antiferromagnet in the maximum critical field: the Fibonacci matrix, Journal of Physics A: Mathematical and General, Volume 30, Number 10, 1997 , pp. L331-L337.
  364. A. Strangeway, A Reconstruction Theorem for Quantum Cohomology of Fano Bundles on Projective Space, arXiv preprint arXiv:1302.5089, 2013
  365. A. Strangeway, Quantum reconstruction for Fano bundles on projective space, Nagoya Math. J. Volume 218 (2015), 1-28.
  366. Strannegard, C., et al., An anthropomorphic method for number sequence problems. Cognitive Systems Research (2012), doi:10.1016/j.cogsys.2012.05.003
  367. C. Strannegård, A. R. Nizamani, A. Sjöberg, F. Engström, Bounded Kolmogorov Complexity Based on Cognitive Models, 2013; http://engstrom.morot.org/material/bounded_kolmogorov.pdf
  368. Krzysztof Strasburger, The order of three lowest-energy states of the six-electron harmonium at small force constan, The Journal of Chemical Physics 144, 234304 (2016); doi: http://dx.doi.org/10.1063/1.4953677
  369. Ross Street, arXiv:math.HO/0303267 Trees, permutations and the tangent function], Reflections 27 (2) (Math. Assoc. of NSW, May 2002), pp. 19-23.
  370. Ross Street, Surprising relationships connecting ploughing a field, mathematical trees, permutations, and trigonometry, Slides from a talk, July 15 2015, Macquarie University. ["There is a Web Page: <https://oeis.org/> by N.J.A. Sloane. It tells, from typing the first few terms of a sequence, whether that sequence has occurred somewhere else in Mathematics. Postgraduate student Daniel Steffen traced this down and found, to our surprise, that the sequence was related to the tangent function tan x. Ryan and Tam searched out what was known about this connection and discovered some apparently new results. We all found this a lot of fun and I hope you will too."]
  371. Volker Strehl, A note on similarity relations, Discrete Mathematics, Volume 19, Issue 1, 1977, Pages 99-101.
  372. Volker Strehl, Alternating permutations and modified Ghandi-polynomials, Discrete Mathematics, Volume 28, Issue 1, 1979, Pages 89-100.
  373. Kyle Sturgill-Simon, An Interesting Opportunity: The Gilbreath Conjecture, Honors Thesis, Mathematics Dept., Carroll Collge, 2012; http://www.carroll.edu/library/thesisArchive/Sturgill-Simon_2012final.pdf
  374. Bernd Sturmfels, Ngoc Mai Tran, arXiv:1105.5504 COMBINATORIAL TYPES OF TROPICAL EIGENVECTORS], 2011.
  375. J. C. Su, On some properties of two simultaneous polygonal sequences, JIS 10 (2007) 07.10.4.
  376. Po-Chi Su, More Upper Bounds on Taxicab and Cabtaxi Numbers, Journal of Integer Sequences, 19 (2016), #16.4.3.
  377. X.-T. Su, D.-Y. Yang, W.-W. Zhang, A note on the generalized factorial, Australasian Journal of Combinatorics, Volume 56 (2013), Pages 133-137.
  378. D. Subedi, Complementary Bell Numbers and p-adic Series, Journal of Integer Sequences, 17 (2014), #14.3.1.
  379. R. A. Sulanke, A recurrence restricted by a diagonal condition: generalized Catalan arrays, Fibonacci Quart. 27 (1989), 33-46.
  380. R. A. Sulanke, "Moments of Generalized Motzkin Paths", J. Integer Sequences, Volume 3, 2000, Article 00.1.1.
  381. R. A. Sulanke, "Objects Counted by the Central Delannoy Numbers", J. Integer Sequences, Volume 6, 2003, Article 03.1.5.
  382. R. A. Sulanke, Generalizing Narayana and Schröder numbers to higher dimensions, Electron. J. Combin. 11 (2004), Research Paper 54, 20 pp. ]
  383. R. A. Sulanke, Moments, Narayana Numbers and the Cut and Paste for Lattice Paths, Journal of Statistical Planning and Inference, Volume 135, Issue 1, 1 November 2005, Pages 229-244.
  384. R. A. Sulanke, Three dimensional Narayana and Schröder numbers, Theoret. Comput. Sci. 346 (2005), no. 2-3, 455-468.
  385. Blair D. Sullivan, "On a Conjecture of Andrica and Tomescu", Journal of Integer Sequences, Vol. 16 (2013), #13.3.1.
  386. Rosemary Sullivan and Neil Watling, Independent divisibility pairs on the set of integers from 1 to n, INTEGERS 13 (2013) #A65.
  387. H. M. Sultan, Net of Pants Decompositions Containing a non-trivial Separating Curve in the Pants Complex, Arxiv preprint arXiv:1106.1472, 2011
  388. H. Sultan, Separating pants decompositions in the pants complex, PDF.
  389. R. Sulzgruber, The Symmetry of the q,t-Catalan Numbers, Masterarbeit, Univ. Wien, 2013; http://www.mat.univie.ac.at/~kratt/theses/sulzgruber.pdf
  390. Brian Y. Sun, Baoyindureng Wu, Two-log-convexity of the Catalan-Larcombe-French sequence, Journal of Inequalities and Applications, 2015, 2015:404; DOI: 10.1186/s13660-015-0920-0.
  391. Ping Sun, Enumeration of standard Young tableaux of shifted strips with constant width, arXiv preprint arXiv:1506.07256, 2015
  392. Xinyu Sun, "New Lower Bound On The Number of Ternary Square-Free Words", J. Integer Sequences, Volume 6, 2003, Article 03.3.2.
  393. Yidong Sun, The Star of David Rule (2008); arXiv:0805.1277; Linear Algebra and its Applications, Volume 429, Issues 8-9, 16 October 2008, Pages 1954-1961.
  394. Yidong Sun and Fei Ma, Four transformations on the Catalan triangle, arXiv preprint arXiv:1305.2017, 2013
  395. Yidong Sun and Fei Ma, Minors of a Class of Riordan Arrays Related to Weighted Partial Motzkin Paths, arXiv preprint arXiv:1305.2015, 2013
  396. Yidong Sun and Fei Ma, Some new binomial sums related to the Catalan triangle, Electronic Journal of Combinatorics 21(1) (2014), #P1.33
  397. Yidong Sun and Zhiping Wang, Pattern Avoidance in Generalized Non-crossing Trees (2008); arXiv:0805.1280
  398. Yidong Sun and Zhiping Wang, String pattern avoidance in generalized non-crossing trees, Disc. Math. Theor. Comp. Sci. 11 (2009) 79-94.
  399. Sun, Yidong; Wu, Xiaojuan The largest singletons of set partitions. European J. Combin. 32 (2011), no. 3, 369-382.
  400. Sun, Yidong; Xu, Yanjie The largest singletons in weighted set partitions and its applications. Discrete Math. Theor. Comput. Sci. 13 (2011), no. 3, 75-85.
  401. Zhi-Hong Sun, "Expansion and identities concerning Lucas Sequences", The Fibonacci Quarterly, Volume 44, May 2006, pages 145-153.
  402. Sun, Zhi-Hong Congruences concerning Lucas sequences. Int. J. Number Theory 10 (2014), no. 3, 793-815.
  403. Zhi-Hong Sun, Congruences for Domb and Almkvist-Zudilin numbers, Integral Transforms & Special Functions, Vol. 26 Issue 8, p642-659, 2015, doi:10.1080/10652469.2015.1034122
  404. Zhi-Hong Sun, Supercongruences involving Euler polynomials, Proc. American Mathematical Society, 144 (2016), 3295-3308.
  405. Zhi-Wei Sun, doi:10.1016/j.jnt.2011.06.005 On Delannoy numbers and Schroeder numbers, J. Number Theory 131 (2011) 2387-2397; arXiv:1009.2486.
  406. Zhi-Wei Sun, On sums involving products of three binomial coefficients, arXiv:1012.3141
  407. Sun, Zhi-Wei, p-adic valuations of some sums of multinomial coefficients. Acta Arith. 148 (2011), no. 1, 63-76.
  408. Zhi-Wei Sun, Conjectures involving combinatorial sequences, Arxiv preprint arXiv:1208.2683, 2012
  409. Z.-W. Sun, Conjectures involving arithmetical sequences, Number Theory: Arithmetic in Shangrila (eds., S. Kanemitsu, H.-Z. Li and J.-Y. Liu), Proc. the 6th China-Japan Sem. Number Theory (Shanghai, August 15-17, 2011), World Sci., Singapore, 2013, pp. 244-258; PDF.
  410. Z.-W. Sun, Conjectures involving primes and quadratic forms, arXiv preprint arXiv:1211.1588, 2012
  411. Zhi-Wei Sun, Products and Sums Divisible by Central Binomial Coefficients, Electronic Journal of Combinatorics, 20(1) (2013), #P9.
  412. Z.-W. Sun, Fibonacci numbers modulo cubes of primes, arXiv:0911.3060; Taiwanese J. Math. 17 (2013). doi:10.11650/tjm.17.2013.2488
  413. Z.-W. Sun, Connections between p = x^2+ 3y^2 and Franel numbers, J. Number Theory 133 (2013), no. 9, 2914-2928.
  414. Z.-W. Sun On some determinants with Legendre symbol entries, 2013; PDF
  415. Z.-W. Sun, Some new problems in additive combinatorics, arXiv preprint arXiv:1309.1679, 2013
  416. Z.-W. Sun, On a^n+ bn modulo m, arXiv preprint arXiv:1312.1166, 2013
  417. ZW SUN, A conjecture on unit fractions involving primes, Preprint 2015; http://maths.nju.edu.cn/~zwsun/UnitFraction.pdf
  418. Sun, Zhi-Wei On functions taking only prime values. J. Number Theory 133 (2013), no. 8, 2794-2812.
  419. Sun, Zhi-Wei Congruences for Franel numbers. Adv. in Appl. Math. 51 (2013), no. 4, 524-535.
  420. Z.-W. Sun, Problems on combinatorial properties of primes, arXiv preprint arXiv:1402.6641, 2014
  421. Z.-W. Sun, New observations on primitive roots modulo primes, arXiv preprint arXiv:1405.0290, 2014
  422. Z.-W. Sun, Congruences involving g_n(x) = Sum_{k= 0..n} C(n,k)^2 C(2k,k) x^k, arXiv preprint arXiv:1407.0967, 2014
  423. Sun, Zhi-Wei Congruences involving generalized central trinomial coefficients. Sci. China Math. 57 (2014), no. 7, 1375-1400.
  424. Z.-W. Sun, A result similar to Lagrange's theorem, arXiv preprint arXiv:1503.03743, 2015
  425. Zhi-Wei Sun, Refining Lagrange's four-square theorem, http://arxiv.org/abs/1604.06723, 2016.
  426. Zhi-Wei Sun and Roberto Tauraso, Congruences involving Catalan numbers (2007), arXiv:0709.1665.
  427. Z-W. Sun and R. Tauraso, doi:10.1016/j.aam.2010.01.001 New congruences for central binomial coefficients, Adv. Appl Math 45 (1) (2010) 125-148
  428. Sun, Zhi-Wei; Tauraso, Roberto On some new congruences for binomial coefficients. Int. J. Number Theory 7 (2011), no. 3, 645-662.
  429. P. Sung and Y. Zhang, Recurring Recurrences in Counting Permutations, 2002-2003.
  430. Zoran Sunik [or Sunic], "Young tableaux and other mutually describing sequences", J. Integer Sequences, Volume 5, 2002, Article 02.1.5.
  431. Z. Sunik [or Sunic], Self-describing sequences and the Catalan family tree (PostScript , Pdf), Electron. J. Combin. 10 (2003), Note 5, 9 pp.
  432. Zoran Sunik [or Sunic], Tree morphisms, transducers and integer sequences (2006), arXiv:math/0612080.
  433. Zoran Sunik [or Sunic], "Rational Tree Morphisms and Transducer Integer Sequences: Definition and Examples", J. Integer Sequences, Volume 10, 2007, Article 07.4.3.
  434. D. Suprijanto and Rusliansyah, Observation on Sums of Powers of Integers Divisible by Four, Applied Mathematical Sciences, Vol. 8, 2014, no. 45, 2219 - 2226; doi:10.12988/ams.2014.4140.
  435. D. Suprijanto, I. W. Suwarno, Observation on Sums of Powers of Integers Divisible by 3k-1, Applied Mathematical Sciences, Vol. 8, 2014, no. 45, 2211 - 2217; doi:10.12988/ams.2014.4139.
  436. Ruedi Suter, "Two Analogues of a Classical Sequence", J. Integer Sequences, Volume 3, 2000, Article 00.1.8.
  437. Andrew V. Sutherland, Constructing elliptic curves over finite fields with prescribed torsion (2008); arXiv:0811.0296
  438. A. V. Sutherland, Notes on torsion subgroups of elliptic curves over number fields, 2012, http://math.mit.edu/~drew/MazursTheoremSubsequentResults.pdf
  439. A. V. Sutherland, Torsion subgroups of elliptic curves over number fields, 2012, http://www-math.mit.edu/~drew/MazursTheoremSubsequentResults.pdf
  440. K. Sutner, The Ehrenfeucht-Mycielski Staircase, (ps, pdf), Impl. Appl Autom. 2759 (2003) 282-293; doi:10.1007/3-540-45089-0_26
  441. Klaus Sutner and Sam Tetruashvili, Inferring Automatic Sequences, http://www.cs.cmu.edu/~sutner/papers/auto-seq.pdf
  442. A. Sutyak, Pierce-Engel Hybrid Expansions, Dissertation, West Virginia Univ., 2008.
  443. J. W. H. Swanepoel, On a generalization of a theorem by Euler, Journal of Number Theory 149 (2015) 46-56.
  444. Christine Swart and Andrew Hone, Integrality and the Laurent phenomenon for Somos 4 sequences (2005), arXiv:math/0508094.
  445. J. F. Sweeney, Clifford Clock and the Moolakaprithi Cube, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.404.5350&rep=rep1&type=pdf, 2014.
  446. John Frederick Sweeney, "Shakti Peetha 52, 42 Nomes, the F4 Exceptional Lie Algebra and the Sedenions of Ancient India and Egypt", http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.697.9942&rep=rep1&type=pdf (Mentions A121738).
  447. S. Sykora, Blazys Expansions and Continued Fractions, Stan's Library, Volume IV, Mathematics, 2013; PDF
  448. Szabados, Michal Distances of group tables and Latin squares via equilateral triangle dissections. J. Combin. Theory Ser. A 123 (2014), 1-7.
  449. P. J. Szablowski, On moments of Cantor and related distributions, arXiv preprint arXiv:1403.0386, 2014
  450. Székely, L. A.; Wang, Hua, On subtrees of trees. Adv. in Appl. Math. 34 (2005), no. 1, 138-155.
  451. Székely, L. A.; Wang, Hua, doi:10.1016/j.dam.2006.05.008 Binary trees with the largest number of subtrees, Discrete Appl. Math. 155 (2007), no. 3, 374-385.
  452. Szilard Szalay, G Barcza, T Szilvási, L Veis, Ö Legeza, The correlation theory of the chemical bond, arXiv preprint arXiv:1605.06919, 2016
  453. Szilard Szalay and Zoltan Kokenyesi, Partial separability revisited, Arxiv preprint arXiv:1206.6253, 2012
  454. Igor Szczyrba, On the existence of ratio limits of weighted $ n $-generalized Fibonacci sequences with arbitrary initial conditions, arXiv preprint arXiv:1604.02361, 2016
  455. I. Szczyrba, R. Szczyrba, M. Burtscher, Analytic and Geometric Representations of the Generalized n-anacci Constants, arXiv preprint arXiv:1409.0577, 2014
  456. Igor Szczyrba, R Szczyrba, M Burtscher, Geometric Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, 19, 2016, #16.3.8.
  457. Szynal-Liana, Anetta; WÅ~Boch, Andrzej; WÅ~Boch, Iwona On generalized Pell numbers generated by Fibonacci and Lucas numbers. Ars Combin. 115 (2014), 411-423.

About this page

  • This is part of the series of OEIS Wiki pages that list works citing the OEIS.
  • Additions to these pages are welcomed.
  • But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
  • If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
  • Works are arranged in alphabetical order by author's last name.
  • Works with the same set of authors are arranged by date, starting with the oldest.
  • This section lists works in which the first author's name begins with the letter S.
  • The full list of sections is: CiteA, CiteB, CiteC, CiteD, CiteE, CiteF, CiteG, CiteH, CiteI, CiteJ, CiteK, CiteL, CiteM, CiteN, CiteO, CiteP, CiteQ, CiteR, CiteS, CiteT, CiteU, CiteV, CiteW, CiteX, CiteY, CiteZ.
  • For further information, see the main page for Works Citing OEIS.
Retrieved from "http://oeis.org/wiki/CiteS"
Personal tools