This site is supported by donations to The OEIS Foundation.

CiteN

From OeisWiki
Jump to: navigation, search


"How to learn if there is a certain regularity in the sequence? The best way is to go to the Online Encyclopedia of Integer Sequences (https://oeis.org/) initiated by Neil James Alexander Sloane, and ask if it contains our sequence." [Tibor Nagy et al., 2 019]

About this page

  • This is part of the series of OEIS Wiki pages that list works citing the OEIS.
  • Additions to these pages are welcomed.
  • But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
  • If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
  • Works are arranged in alphabetical order by author's last name.
  • Works with the same set of authors are arranged by date, starting with the oldest.
  • This section lists works in which the first author's name begins with N.
  • The full list of sections is: A Ba Bi Ca Ci D E F G H I J K L M N O P Q R Sa Sl T U V W X Y Z.
  • For further information, see the main page for Works Citing OEIS.

References

  1. Olivia Nabawanda and Fanja Rakotondrajao, The sets of flattened partitions with forbidden patterns, arXiv:2011.07304 [math.CO], 2020. (A000012, A000045, A000108, A001006, A011782, A028310)
  2. Lukas Nabergall, The combinatorics of a tree-like functional equation for connected chord diagrams, arXiv:2104.02296 [math.CO], 2021. (A000264, A001246, A001764, A064062)
  3. David Naccache and Ofer Yifrach-Stav, Pattern Recognition Experiments on Mathematical Expressions, arXiv:2301.01624 [math.NT], 2022. (A006309)
  4. David Nacin, The Minimal Non-Koszul A(Gamma), arXiv:1204.1534, 2012.
  5. David Nacin, "Puzzles, Parity Maps, and Plenty of Solutions", Chapter 15, The Mathematics of Various Entertaining Subjects: Volume 3 (2019), Jennifer Beineke & Jason Rosenhouse, eds. Princeton University Press, Princeton and Oxford, p. 245. (A001423, A002860)
  6. David Nacin, Van der Laan Sequences and a Conjecture on Padovan Numbers, J. Int. Seq., Vol. 26 (2023), Article 23.1.1. HTML (A000045, A000931, A177704, A291289, A321341, A321664, A327035, A328943)
  7. David Nacin, Fibonacci Convolutions, Mathematics Magazine, 2023. doi:10.1080/0025570X.2023.2201547 (A000045, A000129, A001045)
  8. Yogesh Nagar, R. B. Singh, Sequences and Series, International Journal of Research in Engineering, Science and Management (2019) Vol. 2, No. 7, 427-430. PDF (A000045)
  9. Rohit Nagpal, A Snowden, The module theory of divided power algebras, arXiv preprint arXiv:1606.03431, 2016
  10. G. Nagy, Invariant representation for rectilinear rulings, Journal of Electronic Imaging 23(6), 063011 (Nov∕Dec 2014); PDF
  11. Mariana Nagy, Simon R. Cowell, and Valeriu Beiu, Are 3D Fibonacci spirals for real?: From science to arts and back to science. 2018 7th International Conference on Computers Communications and Control (ICCCC). IEEE, 2018. doi:10.1109/ICCCC.2018.8390443 (A000045, A000931)
  12. Mariana Nagy, Simon R. Cowell, Valeriu Beiu, Survey of Cubic Fibonacci Identities - When Cuboids Carry Weight, arXiv:1902.05944 [math.HO], 2019. (A000032, A000045, A000129, A000931, A056570)
  13. Mariana Nagy, Vlad-Florin Drăgoi, Valeriu Beiu, Employing Sorting Nets for Designing Reliable Computing Nets, IEEE 20th International Conference on Nanotechnology (IEEE-NANO 2020) 370-375. doi:10.1109/NANO47656.2020.9183395 (A003075, A067782)
  14. Tibor Nagy, János Tóth, Tamás Ladics, Automatic model generation, arXiv:1904.01272 [math.NA], 2019. How to learn if there is a certain regularity in the sequence? The best way is to go to the Online Encyclopedia of Integer Sequences (https://oeis.org/) initiated by Neil James Alexander Sloane, and ask if it contains our sequence.
  15. Tibor Nagy, János Tóth, Tamás Ladics, Automatic kinetic model generation and selection based on concentration versus time curves, Int J Chem Kinet. (2020) Vol. 52, 109–123. doi:10.1002/kin.21335
  16. Daniel Q. Naiman, Edward R. Scheinerman, Arbitrage and Geometry, arXiv:1709.07446 [q-fin.MF], 2017 (A014206)
  17. Ramin Naimi, Eric Sundberg, A Combinatorial Problem Solved by a Meta-Fibonacci Recurrence Relation, arXiv:1902.02929 [math.CO], 2019. (A046699)
  18. Yu Nakahata, Jun Kawahara, Takashi Horiyama, Shin-ichi Minato, Implicit Enumeration of Topological-Minor-Embeddings and Its Application to Planar Subgraph Enumeration, arXiv:1911.07465 [cs.DS], 2019. (A066537)
  19. B. K. Nakamura, Computational methods in permutation patterns, PhD Dissertation, Rutgers University, May 2013.
  20. Brian Nakamura, Elizabeth Yang, Competition graphs induced by permutations, arXiv preprint arXiv:1503.05617, 2015
  21. B. Nakamura and D. Zeilberger, Using Noonan-Zeilberger Functional Equations to enumerate (in Polynomial Time!) Generalized Wilf classes, arXiv:1209.2353, 2012 and Adv. Appl. Math. 50 (3) (2013) 356-366 doi:10.1016/j.aam.2012.10.003
  22. Nagatomo Nakamura, Pseudo-Normal Random Number Generation via the Eulerian Numbers</a>, Josai Mathematical Monographs, vol 8, p 85-95, 2015. PDF
  23. F. Nakano, T. Sadahiro, A generalization of carries process and Eulerian numbers, arXiv preprint arXiv:1306.2790, 2013
  24. K. Nakano, Shall We Juggle, Coinductively?, in Certified Programs and Proofs, Lecture Notes in Computer Science Volume 7679, 2012, pp 160-172, doi:10.1007/978-3-642-35308-6_14
  25. Masatoshi Nakano, Some Conjectures on the Divisor Function, J. of Math. & Sys. Sci. (2020) Vol. 10. doi:10.17265/2159-5291/2020.02.002 (Implicitly, A004394, A004490)
  26. Norihiro Nakashima, Shuhei Tsujie, Enumeration of Flats of the Extended Catalan and Shi Arrangements with Species, arXiv:1904.09748 [math.CO], 2019. (A000012, A000110, A000142, A000262, A000670, A002866, A008277, A025168, A034001, A034177, A034325, A050351, A050352, A050353, A075729, A079621, A088729, A105278, A109092, A321837, A321847, A321848)
  27. S. Narayanan, Improving the Speed and Accuracy of the Miller-Rabin Primality Test 2015; http://math.mit.edu/research/highschool/primes/materials/2014/Narayanan.pdf
  28. Lila Naranjani and Madjid Mirzavaziri, Full Subsets of N, Journal of Integer Sequences, Vol. 14 (2011), #11.5.3.
  29. Shyam Narayanan, Improving the Accuracy of Primality Tests by Enhancing the Miller-Rabin Theorem, 2014; http://web.mit.edu/primes/materials/2014/conf/5-1-Narayanan.pdf
  30. Sridhar Narayanan, The Representation Theory of 2-Sylow Subgroups of the Symmetric Group, arXiv:1712.02507 [math.RT], 2017. (A006893)
  31. Veena Narayanan, S. V. Audhithya, Rangu Srikanth, Engineering Applications of Number Theory, International Journal of Mechanical Engineering and Technology (IJMET, 2019) Vol. 10, Issue 1, 69-73. Abstract
  32. Michele Nardelli, Antonio Nardelli, On the Ramanujan's Mock theta functions of tenth order: new possible mathematical developments and mathematical connections with some sectors of Particle Physics and Black Hole physics II, Università degli Studi di Napoli (Italy, 2019). PDF (A053282)
  33. Robert Nasdala, Identities and Oddities, https://www-user.tu-chemnitz.de/~mnas/Documents/winter%20seminar/PhD_seminar_Dec.pdf
  34. David A. Nash, Alexander Betz, Classifying groups with a small number of subgroups, arXiv:2006.11315 [math.GR], 2020. (A274847)
  35. P Nataf, M Lajkó, A Wietek, K Penc, F Mila, AM Läuchli, Chiral spin liquids in triangular lattice SU (N) fermionic Mott insulators with artificial gauge fields, - arXiv preprint arXiv:1601.00958, 2016
  36. Pierpaolo Natalini, Paolo Emilio Ricci, Remarks on Bell and higher order Bell polynomials and numbers, Cogent math. 3 (2016) 1220670 doi:10.1080/23311835.2016.1220670
  37. Pierpaolo Natalini, Paolo Emilio Ricci, Higher order Bell polynomials and the relevant integer sequences, in Appl. Anal. Discrete Math. 11 (2017), 327–339. doi:10.2298/AADM1702327N See also PDF (A144150)
  38. Pierpaolo Natalini, Paolo E. Ricci, Integer Sequences Connected with Extensions of the Bell Polynomials, Journal of Integer Sequences, 2017, Vol. 20, #17.10.2.
  39. Pierpaolo Natalini, Paolo Emilio Ricci, New Bell–Sheffer Polynomial Sets, Axioms 2018, 7(4), 71. doi:10.3390/axioms7040071 (A000110, A164864, A164863, A276723, A276724, A276725, A276726, A287278, A287279, A287280)
  40. Pierpaolo Natalini, Paolo E. Ricci, Adjoint Appell-Euler and First Kind Appell-Bernoulli Polynomials, Applications and Applied Mathematics (2019) Vol. 14, Issue 2, 1112–1122. PDF
  41. Melvyn B. Nathanson, Primitive sets and an Euler phi function for subsets of {1,2,...,n} (2006), arXiv:math/0608150.
  42. M. B. Nathanson, Growth polynomials for additive quadruples and (h, k)-tuples, arXiv preprint arXiv:1305.7172, 2013.
  43. Melvyn B. Nathanson, The third positive element in the greedy Bh-set, arXiv:2310.14426 [math.NT], 2023. (A365300, A365301, A365302, A365303, A365304, A365305)
  44. M. B. Nathanson, K. O'Bryant, A problem of Rankin on sets without geometric progressions, arXiv preprint arXiv:1408.2880, 2014.
  45. Melvyn B. Nathanson, Underapproximation by Egyptian fractions, arXiv:2202.00191 [math.NT], 2022. (A000058)
  46. Melvyn B. Nathanson, The fourth positive element in the greedy Bh-set, arXiv:2311.14021 [math.NT], 2023. (A365300, A365301, A365302, A365303, A365304, A365305)
  47. Lexter R. Natividad, Notes on Jacobsthal and Jacobsthal-like Sequences, International Journal of Mathematics Trends and Technology (IJMTT), Volume 34 Number 2, 2016, p. 115-117. doi:10.14445/22315373/IJMTT-V34P519
  48. L. Naughton and G. Pfeiffer, Integer Sequences Realized by the Subgroup Pattern of the Symmetric Group, arXiv:1211.1911, 2012 and J. Int. Seq. 16 (2013) #13.5.8.
  49. Enrique Navarrete, Forbidden Substrings In Circular K-Successions, arXiv:1702.02637 [math.CO], 2017.
  50. Enrique Navarrete, Daniel Orellana, Finding Prime Numbers as Fixed Points of Sequences, arXiv:1907.10023 [math.NT], 2019. (A000217, A002378, A027468, A028896, A046092, A111273, A113659)
  51. Luis M. Navas, Francisco J. Ruiz, Juan L. Varona, A note on Appell sequences, Mellin transforms and Fourier series, Journal of Mathematical Analysis and Applications (2019) Vol. 476 Issue 2, 836-850. doi:10.1016/j.jmaa.2019.04.019
  52. Miguel Navascues, Tamas Vertesi, The limits of Matrix Product State models, arXiv:1509.04507 [quant-ph]
  53. Miguel Navascués, Tamás Vértesi, Bond dimension witnesses and the structure of homogeneous matrix product states, Quantum 2 (2018): 50. PDF (A096338)
  54. Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar, Muhammad Usman, Nick Barnes, and Ajmal Mian, A Comprehensive Overview of Large Language Models, arXiv:2307.06435 [cs.CL], 2023. See p. 17.
  55. S. P. Naveen, On The Asymptotics of Some Counting Problems in Physics, Thesis, Bachelor of Technology, DEPARTMENT OF PHYSICS, INDIAN INSTITUTE OF TECHNOLOGY, MADRAS, May 2011; PDF
  56. Abdel-Hameed Nawar, Debapriya Sen, k-th price auctions and Catalan numbers, arXiv:1808.05996 [econ.TH], 2018. (A000108)
  57. S. Nazardonyavi and S. Yakubovich, Superabundant numbers, their subsequences and the Riemann hypothesis, arXiv:1211.2147, 2012
  58. S. Nazardonyavi and S. Yakubovich, Delicacy of the Riemann hypothesis and certain subsequences of superabundant numbers, arXiv preprint arXiv:1306.3434, 2013
  59. S. Nazardonyavi, S. Yakubovich, Extremely Abundant Numbers and the Riemann Hypothesis, Journal of Integer Sequences, 17 (2014), Article 14.2.8.
  60. Nazakat Nazeer, Muhammad Imran Asjad, Muhammad Khursheed Azam, and Ali Akgül, Study of Results of Katugampola Fractional Derivative and Chebyshev Inequailities, Int'l J. Appl. Comp. Math. (2022) Vol. 8, Art. No. 225. doi:10.1007/s40819-022-01426-x
  61. Daniel Neamati, Sriramya Bhamidipati, and Grace Gao, Risk-aware autonomous localization in harsh urban environments with mosaic zonotope shadow matching, Artif. Int. (2023) Vol. 324, 104000. doi:https://doi.org/10.1016/j.artint.2023.104000
  62. Travis Near, Improving MATLAB's isprime performance without arbitrary-precision arithmetic, arXiv:2108.04791 [cs.MS], 2021. (A002110, A005867)
  63. Nebe, G., Kneser-Hecke-operators in coding theory. Abh. Math. Sem. Univ. Hamburg 76 (2006), 79-90.
  64. G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
  65. D. Necas, I. Ohlidal, Consolidated series for efficient calculation of the reflection and transmission in rough multilayers, Optics Express, Vol. 22, 2014, No. 4; doi:10.1364/OE.22.004499
  66. Ion Nechita, Some analytical aspects of Hadamard matrices
  67. Z. Nedev, A Reduced Computational Complexity Strategy for the Magnus-Derek Game, International Mathematical Forum, Vol. 9, 2014, no. 7, pp. 325 - 333; doi:10.12988/imf.2014.411
  68. Z. Nedev and S. Muthukrishnan, The Nagger-Mover Game, DIMACS Tech. Report 2005-22.
  69. Z. Nedev, S. Muthukrishnan, The Magnus-Derek game, Theoretical Computer Science, Volume 393, Issues 1-3, 20 March 2008, Pages 124-132.
  70. Patrizio Neff, Andreas Fischle, Lev Borisov, Explicit Global Minimization of the Symmetrized Euclidean Distance by a Characterization of Real Matrices with Symmetric Square, SIAM J. Appl. Algebra Geometry (2019) 3(1), 31–43. doi:10.1137/18M1179663
  71. T. Negadi, The genetic code invariance: when Euler and Fibonacci meet, arXiv preprint arXiv:1406.6092, 2014; Symmetry: Culture and Science, Vol. 25, No. 3, 261-278, 2014
  72. F. Negro, K. Keenan, D. Farina, Power spectrum of the rectified EMG: Influence of motor unit action potential shapes, in: Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE, 26-30 Aug. 2014; Pages: 2193 - 2196; ISSN : 1557-170X doi:10.1109/EMBC.2014.6944053
  73. Denis Neiter, A Proag, Links Between Sums Over Paths in Bernoulli's Triangles and the Fibonacci Numbers, Journal of Integer Sequences, 2016, Vol. 19, #16.8.3.
  74. Luke L. Nelsen, Computational methods for graph choosability and applications to list coloring problems, Ph.D. Thesis, University of Colorado (2019). PDF (A000110)
  75. Roger B. Nelsen, Multi-Polygonal Numbers, Mathematics Magazine, Vol. 89, No. 3 (June 2016), pp. 159-164.
  76. Roger B. Nelsen, Sophie Germain and Safe Prime Products Modulo 18, Math. Mag., 2023 doi:10.1080/0025570X.2023.2266348
  77. Roger B. Nelsen, An Introduction to the Jacobsthal Numbers, College Math. J. (2023). doi:10.1080/07468342.2023.2282201
  78. R. B. Nelsen and H. Schmidt, Jr., Chains in power sets, Math. Mag., 64 (1991), 23-31.
  79. Sarita Nemani, Saroj Aryal, Kaitlyn Bragen, and Alexa Curcio, Two New Properties Of The Fibonacci Sequence, Appl. Math. E-Notes (2022) Vol. 22, 452-456. PDF (A000032, A000045, A000931)
  80. Mohammad Nemati, Taiebeh Tamoradi, Hojat Veisi, Immobilization of Gd(III) complex on Fe3O4: A novel and recyclable catalyst for synthesis of tetrazole and S–S coupling, Polyhedron (2019) Volume 167, 75-84. doi:10.1016/j.poly.2019.04.016
  81. Robert M. Nemba and Alphonse Emadak, "Direct Enumeration of Chiral and Achiral Graphs of a Polyheterosubstituted Monocyclic Cycloalkane", J. Integer Sequences, Volume 5, 2002, Article 02.1.6.
  82. Nemecek, Jan; Klazar, Martin, A bijection between nonnegative words and sparse abba-free partitions. Discrete Math. 265 (2003), no. 1-3, 411-416.
  83. G. Nemes, On the coefficients of the asymptotic expansion of n!, J. Integer Seqs. 13 (2010), 5.
  84. Gergo Nemes, On the coefficients of an asymptotic expansion related to Somos' quadratic recurrence constant, Applicable Analysis and Discrete Mathematics, Vol. 5, No. 1 (April 2011), pp. 60-66; http://www.jstor.org/stable/43666828
  85. Gergő Nemes, An Asymptotic Expansion for the Bernoulli Numbers of the Second Kind, J. Int. Seq. 14 (2011) # 11.4.8
  86. László Németh. Pascal pyramid in the space H2×R. arXiv:1701.06022, [math.CO]. 2017.
  87. László Németh, On the Binomial Interpolated Triangles, Journal of Integer Sequences, Vol. 20 (2017), Article 17.7.8.
  88. László Németh, The trinomial transform triangle, J. Int. Seqs., Vol. 21 (2018), #18.7.3. HTML, also arXiv:1807.07109 [math.NT], 2018. (A000012, A000045, A000073, A000244, A001477, A002378, A003462, A014983, A027907, A033999, A036290, A038608, A082761, A097861, A097893, A097894, A192806.)
  89. László Németh, Tetrahedron trinomial coefficient transform, Integers (2019) Vol. 19, Article A41. Abstract, also arXiv:1905.13475 [math.CO], 2019. (A008778, A023545, A026374, A026375, A026378, A026387, A026388, A028262, A034856, A034942, A085362, A272866)
  90. László Németh, Tilings of (2 × 2 × n)-board with colored cubes and bricks, arXiv:1909.11729 [math.CO], 2019. (A000045, A006253, A030186)
  91. László Németh and Dragan Stevanovic, Graph solution of system of recurrence equations, ResearchGate, 2023. Abstract (A006053, A028495, A214663, A232162, A232164, A232165)
  92. László Németh and László Szalay, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL24/Nemeth/nemeth8.html">Sequences Involving Square Zig-Zag Shapes</a>, J. Int. Seq., Vol. 24 (2021), Article 21.5.2.
  93. Upama Nepal, Sudip Sapkota, Ashish Bhattarai, and Hari Prasad Bashyal, Design, CFD Analysis and Modelling of Archimedean-Spiral type Wind Turbine, Institute of Engineering, Tribhuvan University (Nepal, 2019). PDF
  94. Rafael I. Nepomechie and Francesco Ravanini, Completeness of the Bethe Ansatz solution of the open XXZ chain with nondiagonal boundary terms (2003), arXiv:hep-th/0307095.
  95. R. I. I. Nepomeche, F. Ravanini, doi:10.1088/0305-4470/36/45/003 Completeness of the Bethe Ansatz solution of the open XXZ chain with nondiagonal boundary terms, J. Phys A: Math. Gen. 36 (45) (2003) 11391.
  96. Konstantin Nestmann, Carsten Timm, Time-convolutionless master equation: Perturbative expansions to arbitrary order and application to quantum dots, arXiv:1903.05132 [cond-mat.mes-hall], 2019. (A000629)
  97. Tillmann Nett, Nadine Nett, Andreas Glöckner, Bayesian Analysis of Processed Information in Decision Making Experiments, FernUniversität (Hagen, Germany), University of Cologne (Germany, 2019). doi:10.31234/osf.io/pxwq7 (A039755)
  98. Neudauer, Nancy Ann; Stevens, Brett, Enumeration of the bases of the bicircular matroid on a complete bipartite graph. Ars Combin. 66 (2003), 165-178.
  99. N. Neumarker, Realizability of Integer Sequences as Differences of Fixed Point Count Sequences, JIS 12 (2009) 09.4.5.
  100. Jörg Neunhäuserer, On the universality of Somos' constant, arXiv:2006.02882 [math.DS], 2020. (A052129, A112302, A114124, A116603)
  101. E. Neuwirth, Computing Tournament Sequence Numbers Efficiently With Matrix Techniques, Séminaire Lotharingien de Combinatoire, B47h (2002), 12 pp.
  102. O. Nevzorova, N. Zhiltsov, A. Kirillovich, E. Lipachev, OntoMath^{PRO} Ontology: A Linked Data Hub for Mathematics, arXiv preprint arXiv:1407.4833, 2014
  103. Lee Aaron Newberg, The number of clone orderings, Discrete Applied Mathematics, Volume 69, Issue 3, 27 August 1996, Pages 233-245.
  104. L. A. Newberg, Finding, Evaluating, and Counting DNA Physical Maps (2002), Doctoral Thesis, University of California at Berkeley, 1993.
  105. Heather A. Newman, Hector Miranda, Darren A. Narayan, Edge-Transitive Graphs, arXiv:1709.04750 [math.CO], 2017.
  106. Alexis Newton, Jeremy Rouse, Integers that are sums of two rational sixth powers, arXiv:2101.09390 [math.NT], 2021. (A111152)
  107. Jim Newton, Didier Verna, A Theoretical and Numerical Analysis of the Worst-Case Size of Reduced Ordered Binary Decision Diagrams, ACM Transactions on Computational Logic (TOCL) 20.1 (2019), Article 6. doi:10.1145/3274279, also PDF
  108. R Newton, A R Camacho, Strangely dual orbifold equivalence I, arXiv preprint arXiv:1509.08069, 2015.
  109. Louis Ng, Magic counting with inside-out polytopes, Masters Thesis, San Francisco State University, 2018 (A188122)
  110. Louis Ng, Technically, squares are polytopes, Algebraic and Geometric Combinatorics on Lattice Polytopes (2019) 296-308. doi:10.1142/9789811200489_0019
  111. Hieu D. Nguyen, Mathematics by experiment: Exploring patterns of integer sequences
  112. Hieu D. Nguyen, Experimental Mathematics and Data Mining: Excavating the Online Encyclopedia of Integer Sequences, PDF, February 23, 2011
  113. H. D. Nguyen, A mixing of Prouhet-Thue-Morse sequences and Rademacher functions, http://www.rowan.edu/colleges/csm/departments/math/facultystaff/nguyen/papers/mixing-ptm-rademacher.pdf, 2014; Integers, 15 (2016), #A14.
  114. Hien D. Nguyen, GJ McLachlan, Progress on a Conjecture Regarding the Triangular Distribution, arXiv preprint arXiv:1607.04807, 2016
  115. Hieu D. Nguyen, Douglas Taggart, Mining the Online Encyclopedia of Integer Sequences (2013)
  116. Man V. M. Nguyen, Quality Engineering with Balanced Fractional Factorial Experimental Designs, Southeast Asian Bull. of Math. (2020) Vol. 44, 819-844. PDF
  117. Minh Nguyen, 2-adic Valuations of Square Spiral Sequences, Honors Thesis, Univ. of Southern Mississippi (2021). PDF (A001107, A156859, A325958) Other sequences related to various Ulam square spirals were selected from the Online Encyclopedia of Integer Sequences (OEIS)
  118. Quynh Nguyen, Jean Pedersen, and Hien T. Vu, New Integer Sequences Arising From 3-Period Folding Numbers, Journal of Integer Sequences, #16.3.1, Vol. 19, 2016.
  119. Viet-Ha Nguyen, Kévin Perrot, Mathieu Vallet, NP-completeness of the game Kingdomino™, Theoretical Computer Science (2020) Vol. 822, 23-35. doi:10.1016/j.tcs.2020.04.007, also arXiv:1909.02849 [cs.CC], 2019. (A004003)
  120. Vincent Nguyen, On Some Series Involving Harmonic and Skew-Harmonic Numbers, arXiv:2304.11614 [math.CA], 2023. (A143298)
  121. Kimeu Arphaxad Ngwava, Nick Gill, Ian Short, Nilpotent covers of symmetric groups, arXiv:2005.13869 [math.GR], 2020. (A000009)
  122. Geoff K. Nicholls, Jeong Eun Lee, Nicholas Karn, David Johnson, Rukuang Huang, and Alexis Muir-Watt, Bayesian inference for partial orders from random linear extensions: power relations from 12th Century Royal Acta, arXiv:2212.05524 [stat.ME], 2022.
  123. Nathan M. Nichols, Enots Wolley variations and related sequences, Masters Thesis, Marquette University (2023). PDF (A000120, A001221, A005836, A064413, A090252, A098550, A336957, A338833, A350359, A354169)
  124. T. Nickson, I. Potapov, Broadcasting Automata and Patterns on Z^2, arXiv preprint arXiv:1410.0573, 2014. Also in Automata, Universality, Computation; Emergence, Complexity and Computation; Volume 12, 2015, pp. 297-340; doi:10.1007/978-3-319-09039-9_14.
  125. H. Niederhausen, Catalan Traffic at the Beach, Electronic Journal of Combinatorics, Volume 9(1), 2002, article #R33.
  126. Heinrich Niederhausen, doi:10.1016/j.jspi.2005.02.013 Random walks in octants and related structures, J. Stat. Planning Inf. 135 (2005), no 1, 165-196.
  127. Heinrich Niederhausen, "A Note on the Enumeration of Diffusion Walks in the First Octant by Their Number of Contacts with the Diagonal", J. Integer Sequences, Volume 8, 2005, Article 05.4.3.
  128. Heinrich Niederhausen, Inverses of Motzkin and Schroeder Paths, arXiv:1105.3713, 2011. Also Integers: 12 (2012).
  129. Juan Miguel Nieto, Tailoring and Hexagon Form Factors, Spinning Strings and Correlation Functions in the AdS/CFT Correspondence, Springer Theses (Recognizing Outstanding Ph.D. Research), Springer, Cham, 2018. doi:10.1007/978-3-319-96020-3_7 (A008302)
  130. Sergey Nikitin, Euler-Fermat algorithm and some of its applications, 2018. PDF (A244453)
  131. Y Nikolayevsky, I Tsartsaflis, Cohomology of N-graded Lie algebras of maximal class over Z_2, arXiv preprint arXiv:1512.07676, 2015
  132. Nill, Benjamin, Volume and lattice points of reflexive simplices. Discrete Comput. Geom. 37 (2007), no. 2, 301-320.
  133. Johan Nilsson, arXiv:1001.3513 On the entropy of random Fibonacci words
  134. Johan Nilsson, arXiv:1110.4228 A space efficient algorithm for the calculation of the digit distribution in the Kolakoski sequence; J. Int. Seq. 15 (2012) #12.6.7
  135. J. Nilsson, Enumeration of basic ideals in type B Lie algebras, arXiv:1204.3771, 2012 and J. Int. Seq. 15 (9) (2012) #12.9.5
  136. J. Nilsson, Letter Frequencies in the Kolakoski Sequence, Acta Physica Polonica A, 126 (2014), 549-552.
  137. J. Nilsson, On Counting the Number of Tilings of a Rectangle with Squares of Size 1 and 2, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.2.
  138. Amrik Singh Nimbran, Infinite series for omega-2 constant, 2020. doi:10.13140/RG.2.2.32148.32643 (A064582)
  139. Amrik Singh Nimbran and Paul Levrie, Series of the form ∑ an C(2n, n), Math. Student (2023) Vol. 92, Nos. 3-4, 155-173. Abstract (A038348 pp. 10, 16, A096914 p. 9)
  140. Wayne Nirode and Norm Krumpe, Donuts with Pythagoras, College Math. J. (2022). doi:10.1080/07468342.2022.2099705
  141. Wayne Nirode and Norm Krumpe, The Search for Perfect Donuts, Mathematics Teacher: Learning and Teaching PK-12 (NCTM 2023) Vol. 116, Issue 6, 448-453. doi:10.5951/MTLT.2022.0266
  142. Viorel Niţică, Andrei Török, About Some Relatives of Palindromes, arXiv:1908.00713 [math.NT], 2019. (A305131, A306830)
  143. Viorel Niţică, Jeroz Makhania, About the Orbit Structure of Sequences of Maps of Integers, Symmetry (2019), Vol. 11, No. 11, 1374. doi:10.3390/sym11111374 (A305130, A305131, A306830, A323190)
  144. Mor Nitzan, Shmuel Nitzan, Erel Segal-Halevi, On Level-1 Consensus Ensuring Stable Social Choice, arXiv:1704.06037 [cs.GT], 2017.
  145. Mor Nitzan, S Nitzan, E Segal-Halevi, Flexible level-1 consensus ensuring stable social choice: analysis and algorithms, Social Choice and Welfare, (2017). doi:10.1007/s00355-017-1092-2
  146. R. K. Niven, Combinatorial entropies and statistics, Eur. Phys. J. B 70 (1) (2009) 49-63 doi:10.1140/epjb/e2009-00168-5
  147. S. Nkonkobe, V. Murali, On Some Identities of Barred Preferential Arrangements, arXiv preprint arXiv:1503.06173, 2015
  148. Nkonkobe, S., and V. Murali. "A study of a family of generating functions of Nelsen–Schmidt type and some identities on restricted barred preferential arrangements." Discrete Mathematics, Vol. 340 (2017), 1122-1128.
  149. Sithembele Nkonkobe, Venkat Murali, Béata Bényi, Generalised Barred Preferential Arrangements, arXiv:1907.08944 [math.CO], 2019. (A216794)
  150. A. Nkwanta, Lattice paths and RNA secondary structures, in African Americans in Mathematics, ed. N. Dean, Amer. Math. Soc., 1997, pp. 137-147.
  151. A. Nkwanta, A Riordan matrix approch to unifying a selected class of combinatorial arrays, Congr. Numerantium 160 (2003) 33-45
  152. A. Nkwanta, Riordan matrices and higher-dimensional lattice walks, J. Stat. Plann. Infer. 140 (2010) 2321-2334 doi:10.1016/j.jspi.2010.01.027
  153. Asamoah Nkwanta and Earl R. Barnes, Two Catalan-type Riordan Arrays and their Connections to the Chebyshev Polynomials of the First Kind, Journal of Integer Sequences, Article 12.3.3, 2012.
  154. A. Nkwanta, A. Tefera, Curious Relations and Identities Involving the Catalan Generating Function and Numbers, Journal of Integer Sequences, 16 (2013), #13.9.5.
  155. Albert No, Nonasymptotic Upper Bounds on Binary Single Deletion Codes via Mixed Integer Linear Programming, Entropy (2019) Vol. 21, 1202. doi:10.3390/e21121202 (A265032)
  156. Massimo Nocentini, "An algebraic and combinatorial study of some infinite sequences of numbers supported by symbolic and logic computation", PhD Thesis, University of Florence, 2019.
  157. Massimo Nocentini, Donatella Merlini, Crawling, (pretty) printing, and graphing the OEIS, Dipartimento di Statistica, Informatica, Applicazioni, Università di Firenze (2018). PDF
  158. Laurent Noé, Spaced seed design on profile HMMs for precise HTS read-mapping efficient sliding window product on the matrix semi-group, in Rapide Bilan 2012-2013 Laurent LIFL, Université Lille 1 - INRIA Journées au vert 11 et 12 juin 2013 Laurent Année 2012-2013; PDF
  159. Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, J. Integer Sequences, Volume 9, 2006, Article 06.2.7.
  160. T. D. Noe, JIS 11 (2008) 08.1.2
  161. Tony D. Noe and Jonathan Vos Post, "Primes in Fibonacci n-step and Lucas n-step Sequences", J. Integer Sequences, Volume 8, 2005, Article 05.4.4.
  162. Diego Noja, Sergio Rolando, Simone Secchi, Standing waves for the NLS on the double-bridge graph and a rational-irrational dichotomy, arXiv:1706.09616 [math.AP], 2017.
  163. J. Noonan, The number of permutations containing exactly one increasing subsequence of length three. Discrete Math. 152 (1996), no. 1-3, 307-313.
  164. J. Noonan and D. Zeilberger, arXiv:math.CO/9806036 The Goulden-Jackson cluster method: extensions, applications and implementations
  165. J. Noonan and D. Zeilberger, The Goulden-Jackson Cluster Method: Extensions, Applications and Implementations, J. Difference Eq. Appl. 5 (1999), 355-377.
  166. P. Noppakaew et al., k-Fibonacci numbers and k-Lucas numbers in Beatty sequences ..., Fib. Quart.,61:2 (May 2023), 167-177.
  167. Eric Nordenstam, Benjamin Young, Correlations for the Novak process, arXiv:1201.4138, 2012.
  168. Ronald P. Nordgren, Compound Lucas Magic Squares, arXiv:2103.04774 [math.GM], 2021. (A001147)
  169. Viktor Nordgren, Olga Leskovjanová, Jan Provazník, Natalia Korolkova, and Ladislav Mišta Jr., Convicting emergent multipartite entanglement with evidence from a partially blind witness, arXiv:2103.07327 [quant-ph], 2021. (A000055)
  170. Benedict Vasco Normenyo, Bir Kafle, and Alain Togbé, Repdigits as Sums of Two Fibonacci Numbers and Two Lucas Numbers, Integers (2019) Vol. 19, Article A55. PDF (A010785)
  171. William Norledge, Adrian Ocneanu, Hopf monoids, permutohedral tangent cones, and generalized retarded functions, arXiv:1911.11736 [math.CO], 2019. (A034997)
  172. S. Northshield, Stern's diatomic sequence 0, 1, 1, 2, 1, 3, 2, 3, 1, 4, ..., Amer. Math. Monthly, 117 (2010), 581-598.
  173. Sam Northshield, Three analogues of Stern's diatomic sequence, arXiv:1503.03433 [math.CO], 2015.
  174. S. Northshield, An Analogue of Stern's Sequence for Z[sqrt(2)], Journal of Integer Sequences, 18 (2015), #15.11.6.
  175. Sam Northshield, Re^3counting the Rationals, 2018. PDF. (A002478)
  176. Sam Northshield, Topographs; Conway and otherwise, 19th International Conference on Fibonacci Numbers and their Applications (2020). PDF (A001653)
  177. Sam Northshield, Some generalizations of a formula of Reznick, SUNY Plattsburgh (2022). PDF (A002478, A054204, A272569)
  178. E. Norton, Symplectic Reflection Algebras in Positive Characteristic as Ore Extensions, arXiv preprint arXiv:1302.5411, 2013
  179. Eric John Leo Nöth, Analysis of grammar-based tree compression, Dissertation, Eingereicht bei der Naturwissenschaftlich-Technischen Fakultat der Universitat Siegen, Siegen 2016; http://dokumentix.ub.uni-siegen.de/opus/volltexte/2016/1019/pdf/Dissertation_Eric_John_Leo_Noeth.pdf
  180. Mathilde Noual, Dynamics of Circuits and Intersecting Circuits, in LANGUAGE AND AUTOMATA THEORY AND APPLICATIONS, Lecture Notes in Computer Science, 2012, Volume 7183/2012, 433-444, doi:10.1007/978-3-642-28332-1_37, arXiv:1011.3930.
  181. Mathilde Noual and Sylvain Sene, Towards a theory of modelling with Boolean automata networks-I. Theorisation and observations, arXiv:1111.2077, 2011
  182. J. Novak, Three lectures on free probability, arXiv:1205.2097, 2012
  183. J.-C. Novelli, m-dendriform algebras, arXiv preprint arXiv:1406.1616, 2014
  184. Novelli, Jean-Christophe; Reutenauer, Christophe; Thibon, Jean-Yves Generalized descent patterns in permutations and associated Hopf algebras. European J. Combin. 32 (2011), no. 4, 618-627.
  185. J.-C. Novelli and J.-Y. Thibon, arXiv:math.CO/0405597 Free quasi-symmetric functions of arbitrary level
  186. J.-C. Novelli and J.-Y. Thibon, arXiv:math.CO/0511200 Hopf algebras and dendriform structures arising from parking functions, Fund. Math. 193 (2007), no. 3, 189-241.
  187. J.-C. Novelli and J.-Y. Thibon, arXiv:math.CO/0512570 Noncommutative Symmetric Functions and Lagrange Inversion; Advances in Applied Mathematics, Volume 40, Issue 1, January 2008, Pages 8-35.
  188. J.-C. Novelli and J.-Y. Thibon, arXiv:math.CO/0605061 Polynomial realizations of some trialgebras, Proc. Formal Power Series and Algebraic Combinatorics 2006 (San-Diego, June 2006)
  189. Jean-Christophe Novelli and Jean-Yves Thibon, A one-parameter family of dendriform identities (2007), arXiv:0709.3235 and J. Comb. Theory A 116 (4) (2009) 863 doi:10.1016/j.jcta.2008.11.009.
  190. Jean-Christophe Novelli and Jean-Yves Thibon, Free quasi-symmetric functions and descent algebras for wreath products, and noncommutative multi-symmetric functions (2008); arXiv:0806.3682. Discrete Math. 310 (2010), no. 24, 3584-3606.
  191. Jean-Christophe Novelli and Jean-Yves Thibon, Superization and (q,t)-specialization in combinatorial Hopf algebras (2008); arXiv:0803.1816
  192. J.-C. Novelli and J.-Y. Thibon, Duplicial algebras and Lagrange inversion, arXiv:1209.5959, 2012
  193. J.-C. Novelli and J.-Y. Thibon, Binary shuffle bases for quasi-symmetric functions, arXiv preprint arXiv:1305.5032, 2013
  194. J.-C. Novelli, J.-Y. Thibon, Hopf Algebras of m-permutations, (m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962, 2014
  195. Jean-Christophe Novelli, Jean-Yves Thibon, On composition polynomials, arXiv:1510.03033 [math.CO], (11-October-2015)
  196. Jean-Christophe Novelli and Jean-Yves Thibon, Noncommutative Symmetric Functions and Lagrange Inversion II: Noncrossing partititions and the Farahat-Higman algebra, arXiv:2106.08257 [math.CO], 2021. (A003168, A055151, A102537)
  197. J.-C. Novelli, J.-Y. Thibon and N. M. Thiéry, Algèbres de Hopf de graphes, C.R. Acad. Sci. Paris (Comptes Rendus Mathematique), 339 (2004), 607-610. doi:10.1016/j.crma.2004.09.012 arXiv:0812.3407
  198. Jean-Christophe Novelli, Jean-Yves Thibon, Frédéric Toumazet, Noncommutative Bell polynomials and the dual immaculate basis, arXiv:1705.08113 [math.CO], 2017.
  199. Jean-Christophe Novelli, Jean-Yves Thibon, Frederic Toumazet, A noncommutative cycle index and new bases of quasi-symmetric functions and noncommutative symmetric functions, arXiv:1804.01762 [math.CO], 2018.
  200. J.-C. Novelli, J.-Y. Thibon, L. K. Williams, Combinatorial Hopf algebras, noncommutative Hall-Littlewood functions, and permutation tableaux, Adv. Math. 224 (4) (2010)1311-1348 doi:10.1016/j.aim.2010.01.006
  201. Ivan Novikov, Feynman checkers: the probability to find an electron vanishes nowhere inside the light cone, arXiv:2010.05088 [math-ph], 2020. All the identities were first discovered in Wolfram Mathematica, sometimes with the help of the On-Line Encyclopedia of Integer Sequences [8].
  202. A. Novocin, D. Saunders, A. Stachnik, B. Youse, 3-ranks for strongly regular graphs, in Proceeding PASCO '15 Proceedings of the 2015 International Workshop on Parallel Symbolic Computation, Pages 101-108 ACM New York, NY, USA, doi:10.1145/2790282.2790295
  203. W. G. Nowak and L. Tóth, On the average number of subgroups of the group Z_m X Z_n, arXiv preprint arXiv:1307.1414, 2013.
  204. Richard Nowakowski, Unsolved Problems in Combinatorial Games, Games of No Chance 5 (2017) Vol. 70, See p. 158. Abstract
  205. R. J. Nowakowski, G. Renault, E. Lamoureux, S. Mellon and T. Miller, The Game of timber!, http://www.labri.fr/perso/grenault/NRLMM.pdf, 2013.
  206. A. Nowicki, The numbers a^2+b^2-dc^2, J. Int. Seq. 18 (2015) # 15.2.3
  207. Marc Noy, Graph enumeration, Chapter 6 in 'Handbook of enumerative combinatorics' (2013)
  208. Marc Noy, Juanjo Rue, Counting polygon dissections in the projective plane, Advances in Applied Mathematics, Volume 41, Issue 4, October 2008, Pages 599-619.
  209. Numberphile, Can a number be boring? (feat 14972), https://www.youtube.com/watch?v=VDYzSzDaHuM, 2014.
  210. Arthur Nunge, Eulerian polynomials on segmented permutations. arXiv:1805.01797 [math.CO], 2018. (A000670, A008277, A019538)
  211. Juan Carlos Nuño and Francisco J. Muñoz, Entropy-Variance curves of binary sequences generated by random substitutions of constant length, arXiv:2112.15563 [math.PR], 2021. (A202019)
  212. Carl-Fredrik Nyberg-Brodda, On congruence subgroups of SL₂(ℕ[1/p]) generated by two parabolic elements, arXiv:2312.11258 [math.GR], 2023. (A007434)
  213. G. Nyul, G. Rácz, The r-Lah numbers, Discrete Mathematics, 338 (2015), 1660-1666.
  214. J.-P. Nzali, K. T. Porguy, H. Tapamo, Algorithme de Calcul du degré de retournement d'un graphe planaire topologique, Arima, Volume 1 - 2002.

About this page

  • This is part of the series of OEIS Wiki pages that list works citing the OEIS.
  • Additions to these pages are welcomed.
  • But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
  • If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
  • Works are arranged in alphabetical order by author's last name.
  • Works with the same set of authors are arranged by date, starting with the oldest.
  • The full list of sections is: A Ba Bi Ca Ci D E F G H I J K L M N O P Q R Sa Sl T U V W X Y Z.
  • For further information, see the main page for Works Citing OEIS.