This site is supported by donations to The OEIS Foundation.

# CiteI

### From OeisWiki

## Contents |

# CiteI

## About this page

- This is part of the series of OEIS Wiki pages that list works citing the OEIS.
- Additions to these pages are welcomed.
- But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
- If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
- Works are arranged in alphabetical order by author's last name.
- Works with the same set of authors are arranged by date, starting with the oldest.
- This section lists works in which the first author's name begins with the letter I.
- The full list of sections is: CiteA, CiteB, CiteC, CiteD, CiteE, CiteF, CiteG, CiteH,
**CiteI**, CiteJ, CiteK, CiteL, CiteM, CiteN, CiteO, CiteP, CiteQ, CiteR, CiteS, CiteT, CiteU, CiteV, CiteW, CiteX, CiteY, CiteZ. - For further information, see the main page for
**Works Citing OEIS**.

## References

- Ionut E. Iacob, T. Bruce McLean and Hua Wang, The V-flex, Triangle Orientation, and Catalan Numbers in Hexaflexagons, The College Mathematics Journal, Vol. 43, No. 1 (January 2012), pp. 6-10.
- Douglas E. Iannucci, "The Kaprekar Numbers", J. Integer Sequences, Volume 3, 2000, Article 00.1.2.
- Douglas E. Iannucci and Bertrum Foster, "Kaprekar Triples", J. Integer Sequences, Volume 8, 2005, Article 05.4.8.
- Douglas E. Iannucci and Donna Mills-Taylor, "On Generalizing the Connell Sequence", J. Integer Sequences, Volume 2, 1999, Article 99.1.7.
- Douglas E. Iannucci, Deng Moujie and Graeme L. Cohen, "On Perfect Totient Numbers", J. Integer Sequences, Volume 6, 2003, Article 03.4.5.
- Aminu A. Ibrahim, An enumeration scheme and some algebraic properties of a special (132)-avoiding class of permutation patterns, Trends Apl. Sci. Res. 2 (4) (2007) 334-350
- A. M. Ibrahim, Extension of factorial concept to negative numbers, Notes on Number Theory and Discrete Mathematics, Vol. 19, 2013, 2, 30-42; http://www.nntdm.net/papers/nntdm-19/NNTDM-19-2-30_42.pdf
- Kentaro Ihara, Derivations and automorphisms on non-commutative power series, Journal of Pure and Applied Algebra, Volume 216, Issue 1, January 2012, Pages 192-201; doi:10.1016/j.jpaa.2011.06.004
- M. Iida, On Triangle of numbers, Josai Mathematical Monographs, Vol. 5 (2012), 61-70; http://libir.josai.ac.jp/infolib/user_contents/pdf/JOS-13447777-05_61.pdf
- Soichi Ikeda and Kaneaki Matsuoka, On the Lcm-Sum Function, Journal of Integer Sequences, Vol. 17 (2014), Article 14.1.7
- S. Ikeda, K. Matsuoka, On transcendental numbers generated by certain integer sequences, Siauliai Math. Semin., 8 (16) 2013, 63-69; http://siauliaims.su.lt/pdfai/2013/Iked-Mats-2013.pdf
- Aleksandar Ilic and Andreja Ilic, doi:10.2298/FIL1103191I On the number of restricted Dyck paths, Filomat 25:3 (2011), 191-201; PDF
- A. Ilic, S. Klavzar and Y. Rho, Parity index of binary words and powers of prime words, http://www.fmf.uni-lj.si/~klavzar/preprints/BalancedFibo-submit.pdf, 2012
- L. Ilie and V. Mitrana, Binary Self-Adding Sequences and Languages, TUCS Technical Reports No. 18, May 1996.
- Images des Maths, CNRS, <a href="http://images.math.cnrs.fr/Lagrange-et-la-variation-des.html">Lagrange et la variation des théorèmes</a> (2013)
- K. S. Immink, Coding Schemes for Multi-Level Channels that are Intrinsically Resistant Against Unknown Gain and/or Offset Using Reference Symbols, http://www.exp-math.uni-essen.de/~immink/pdf/jsac13.pdf, 2013.
- Yoshinari Inaba, "Hyper-Sums of Powers of Integers and the Akiyama-Tanigawa Matrix", J. Integer Sequences, Volume 8, 2005, Article 05.2.7.
- International Mathematical Union, Minutes of 17th Meeting of Organizing Committee, 2013; http://www.mathunion.org/fileadmin/CEIC/Minutes/17th_Minutes-OC.pdf
- Eugen J. Ionascu, "A Parametrization of Equilateral Triangles Having Integer Coordinates", J. Integer Sequences, Volume 10, 2007, Article 07.6.7.
- Eugen J. Ionascu, A characterization of regular tetrahedra in Z^3 (2007); arXiv:0712.3951; Journal of Number Theory, Volume 129, Issue 5, May 2009, Pages 1066-1074.
- Eugen J. Ionascu, arXiv:math/0701111 Counting all equilateral triangles in {0,1,2,...,n}^3, (2007).
- E. J. Ionascu, Regular tetrahedra whose vertices have integer coordinates, Acta Math. Univ. Comenianae, Vol. LXXX, 2 (2011), pp. 161-170
- E. J. Ionascu, Ehrhart's polynomial for equilateral triangles in Z^3, Arxiv preprint arXiv:1107.0695, 2011.
- E, J, Ionascu, Lattice Platonic Solids and their Ehrhart polynomial, Arxiv preprint arXiv:1111.1150, 2011
- Ionascu, Eugen J.; and Markov, Andrei; doi:10.1016/j.jnt.2010.07.008 Platonic solids in Z^3, J. Number Theory 131 (2011), no. 1, 138-145.
- Eugen J. Ionascu and R. A. Obando, Cubes in {0,1,...,N}^3, INTEGERS, 12A (2012), #A9.
- Lawrence Ip, Catalan numbers and random matrices (1999)
- J. Iraids, K. Balodis, J. Cernenoks, M. Opmanis, R. Opmanis and K. Podnieks, Integer Complexity: Experimental and Analytical Results. Arxiv preprint arXiv:1203.6462, 2012
- E. Irurozki, B. Calvo, J. A. Lozano, An R package for permutations, Mallows and Generalized Mallows models, 2014; https://addi.ehu.es/bitstream/10810/11238/1/tr14-5.pdf
- E. Irurozki, B. Calvo, J. A. Lozano, Sampling and learning the Mallows and Weighted Mallows models under the Hamming distance, 2014; https://addi.ehu.es/bitstream/10810/11240/1/tr14-3.pdf
- E. Irurozki, B. Calvo, J. A. Lozano, Sampling and learning the Mallows model under the Ulam distance, 2014; https://addi.ehu.es/bitstream/10810/11241/1/tr14-4.pdf
- ABRAHAM ISGUR, VITALY KUZNETSOV AND STEPHEN M. TANNY, A combinatorial approach for solving certain nested recursions with non-slow solutions, Arxiv preprint arXiv:1202.0276, 2012
- A. Isgur, D. Reiss, Trees and meta-Fibonacci sequences, El. J. Combinat. 16 (2009) #R129
- Dan Ismailescu and Peter Seho Park, On Pairwise Intersections of the Fibonacci, Sierpinski, and Riesel Sequences, Journal of Integer Sequences, 16 (2013), #13.9.8.
- Genta Ito, Least change in the Determinant or Permanent of a matrix under perturbation of a single element: continuous and discrete cases (2008); arXiv:0805.2081
- Genta Ito, Approximate formulation of the probability that the Determinant or Permanent of a matrix undergoes the least change under perturbation of a single element (2008); arXiv:0805.2083
- A. Iványi, Leader election in synchronous networks, Acta Univ. Sapientiae, Mathematica, 5, 2 (2013) 54-82.
- A. IVANYI, L. LUCZ, T. MATUSZKA and S. PIRZADA, Parallel enumeration of degree sequences of simple graphs, Acta Univ. Sapientiae, Informatica, 4, 2 (2012) 260-288.
- A. Ivanyi and J. E. Schoenfield, Deciding football sequences, Acta Univ. Sapientiae, Informatica, 4, 1 (2012) 130-183, http://www.acta.sapientia.ro/acta-info/C4-1/info41-7.pdf.
- H. Iwashita, J. Kawahara and S.-I. Minato, ZDD-Based Computation of the Number of Paths in a Graph, Division of Computer Science, Report Series A, September 18, 2012, Hokkaido University, 2012; http://www-alg.ist.hokudai.ac.jp/~thomas/TCSTR/tcstr_12_60/tcstr_12_60.pdf.
- Kozue Iwata, Shiro Ishiwata and Shin-ichi Nakano, A Compact Encoding of Unordered Binary Trees, in Theory and Applications of Models of Computation, Lecture Notes in Computer Science, 2011, Volume 6648/2011, 106-113, doi:10.1007/978-3-642-20877-5_11

## About this page

- This is part of the series of OEIS Wiki pages that list works citing the OEIS.
- Additions to these pages are welcomed.
- But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
- If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
- Works are arranged in alphabetical order by author's last name.
- Works with the same set of authors are arranged by date, starting with the oldest.
- This section lists works in which the first author's name begins with the letter I.
- The full list of sections is: CiteA, CiteB, CiteC, CiteD, CiteE, CiteF, CiteG, CiteH,
**CiteI**, CiteJ, CiteK, CiteL, CiteM, CiteN, CiteO, CiteP, CiteQ, CiteR, CiteS, CiteT, CiteU, CiteV, CiteW, CiteX, CiteY, CiteZ. - For further information, see the main page for
**Works Citing OEIS**.