This site is supported by donations to The OEIS Foundation.

CiteE

From OeisWiki

Jump to: navigation, search


Contents

CiteE

About this page

  • This is part of the series of OEIS Wiki pages that list works citing the OEIS.
  • Additions to these pages are welcomed.
  • But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
  • If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
  • Works are arranged in alphabetical order by author's last name.
  • Works with the same set of authors are arranged by date, starting with the oldest.
  • This section lists works in which the first author's name begins with the letter E.
  • The full list of sections is: CiteA, CiteB, CiteC, CiteD, CiteE, CiteF, CiteG, CiteH, CiteI, CiteJ, CiteK, CiteL, CiteM, CiteN, CiteO, CiteP, CiteQ, CiteR, CiteS, CiteT, CiteU, CiteV, CiteW, CiteX, CiteY, CiteZ.
  • For further information, see the main page for Works Citing OEIS.


References

  1. J. Earls, A note on the Smarandache divisors of divisors sequence and two similar sequences, Smarand. Notions J. 14 (1) (2004) 274--275.
  2. E. Early, Chain Lengths in the Dominance Lattice, 2002. Presented at FPSAC '03. Discrete Math., 313 (2013), 2168-2177.
  3. Edward Early, Chain Lengths in the Dominance Lattice, June 8, 2013; http://myweb.stedwards.edu/edwarde/partitions.pdf
  4. J. East, R. D. Gray, Idempotent generators in finite partition monoids and related semigroups, arXiv preprint arXiv:1404.2359, 2014
  5. M. Eastwood, The X-ray transform on projective space
  6. MICHAEL EASTWOOD AND HUBERT GOLDSCHMIDT, Zero-energy fields on complex projective space, arXiv:1108.1602, 2011
  7. Sean Eberhard, F Manners, R Mrazovic, Additive triples of bijections, or the toroidal semiqueens problem, arXiv preprint arXiv:1510.05987, 2015
  8. Kurusch Ebrahimi-Fard and Dominique Manchon, Dendriform Equations (2008); arXiv:0805.0762
  9. Edel, Yves; Elsholtz, Christian; Geroldinger, Alfred; Kubertin, Silke; Rackham, Laurence, Zero-sum problems in finite abelian groups and affine caps. Q. J. Math. 58 (2007), no. 2, 159-186.
  10. A. Edelman, M. La Croix, The Singular Values of the GUE (Less is More), arXiv preprint arXiv:1410.7065, 2014
  11. G. A. Edgar, Transseries for beginners, arXiv:0801.4877.
  12. Tom Edgar, Totienomial Coefficients, INTEGERS, 14 (2014), #A62.
  13. Tom Edgar and Michael Z. Spivey, Multiplicative functions, generalized binomial coefficients, and generalized Catalan numbers, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.6.
  14. A. L. Edmonds and S, Klee, The combinatorics of hyperbolized manifolds, arXiv preprint arXiv:1210.7396, 2012
  15. Charles C. Edmunds, Edmond W. H. Lee, Ken W. K. Lee, Small semigroups generating varieties with continuum many subvarieties, Order 27 (2010) 83-100; doi:10.1007/s11083-010-9142-8
  16. Marcia Edson, Scott Lewis and Omer Yayenie, THE K-PERIODIC FIBONACCI SEQUENCE AND AN EXTENDED BINET'S FORMULA, INTEGERS 11 (2011) #A32.
  17. K. Edwards, A Pascal-like triangle related to the tribonacci numbers, Fib. Q., 46/47 (2008/2009), 18-25.
  18. K. Edwards, M. A. Allen, Strongly restricted permutations and tiling with fences, Discrete Applied Mathematics, Volume 187, 31 May 2015, Pages 82–90 ["Finally, we thank Sloane for the OEIS [12] which facilitated our making the connection between fence tilings and strongly restricted permutations."]
  19. A. L. Efros and E. V. Tsiper, An unusual metallic phase in a chain of strongly interacting particles, J. Phys.: Cond. Matt. (Letter) 9, L561-L567 (1997).
  20. S. Eger, The Combinatorics of String Alignments: Reconsidering the Problem, Journal of Quantitative Linguistics, Volume 19, Issue 1, 2012; doi:10.1080/09296174.2011.638792
  21. S. Eger, Restricted Weighted Integer Compositions and Extended Binomial Coefficients, Journal of Integer Sequences, 16 (2013), #13.1.3.
  22. S. Eger, Stirling's Approximation for Central Extended Binomial Coefficients, American Mathematical Monthly, 121 (2014), 344-349.
  23. Steffen Eger, <a href="http://arxiv.org/abs/1511.00622">On the Number of Many-to-Many Alignments of N Sequences</a>, arXiv:1511.00622 [math.CO], 2015.
  24. Eric S. Egge, Restricted colored permutations and Chebyshev polynomials, Discrete Mathematics, Volume 307, Issue 14, 28 June 2007, Pages 1792-1800.
  25. Eric S. Egge, Defying God: The Stanley-Wilf Conjecture, Stanley-Wilf Limits, and a Two-Generation Explosion of Combinatorics, pp. 65-82 of "A Century of Advancing Mathematics", ed. S. F. Kennedy et al., MAA Press 2015; http://www.maa.org/sites/default/files/pdf/pubs/books/members/cent_volume.pdf
  26. ES Egge, K Rubin, Snow Leopard Permutations and Their Even and Odd Threads, arXiv preprint arXiv:1508.05310, 2015
  27. Eggleton, Roger B. "Maximal Midpoint-Free Subsets of Integers." International Journal of Combinatorics Volume 2015, Article ID 216475, 14 pages; http://dx.doi.org/10.1155/2015/216475; http://www.hindawi.com/journals/ijcom/2015/216475/abs/
  28. R. B Eggleton and M. Morayne, A Note on Counting Homomorphisms of Paths, Graphs and Combinatorics November 2012, doi:10.1007/s00373-012-1261-0.
  29. Egorychev, Georgy P.; Zima, Eugene V. Decomposition and group theoretic characterization of pairs of inverse relations of the Riordan type. Acta Appl. Math. 85 (2005), no. 1-3, 93-109.
  30. Georgy P. Egorychev, Eugene V. Zima, Integral Representation and Algorithms for Closed Form Summation, Handbook of Algebra, Volume 5, 2008, Pages 459-529.
  31. M. Egozcue, S. Massoni, W,-K. Wong and R. Zitikis, Integration-segregation decisions under general value functions:"Create your own bundle-choose 1, 2, or all 3!", Documents de Travail du Centre d'Economie de la Sorbonne, #2012.57, 2012; ftp://iae.univ-paris1.fr/pub/mse/CES2012/12057.pdf
  32. Tohru Eguchi, Kazuhiro Hikami, Superconformal Algebras and Mock Theta Functions (2008) arXiv:0812.1151
  33. Richard Ehrenborg and N. Bradley Fox, The Descent Set Polynomial Revisited, arXiv:1408.6851, 2014
  34. R. Ehrenborg, S. Kitaev, E. Steingrimsson, Number of cycles in the graph of 312-avoiding permutations, arXiv preprint arXiv:1310.1520, 2013
  35. D. Ehrmann, Z. Higgins, V. Nitica, The Geometric Structure of Max-Plus Hemispaces, arXiv preprint arXiv:1402.2857, 2014
  36. Omer I. Eid, Ramanujan-Nagell Equation: A Simple Solution, Journal of American Science, 2015;11(7), http://www.jofamericanscience.org
  37. S. Eilers, The LEGO counting problem, Amer. Math. Mnthly, 123 (May 2016), 415-426.
  38. C Elsholtz, G Harman, On Conjectures of T. Ordowski and ZW Sun Concerning Primes and Quadratic Forms, in C. Pomerance and M. T. Rassias, eds., Anaytic Number Theory, Springer 2015, pp. 65-81.
  39. Eising, Jaap, David Radcliffe, and Jaap Top. "A Simple Answer to Gelfand’s Question." The American Mathematical Monthly 122.03 (2015): 234-245.
  40. R. Eisinga, R. Breitling and T. Heskes, The exact probability distribution of the rank product statistics for replicated experiments, FEBS Letters, 2013, 587: 677-682, doi:10.1016/j.febslet.2013.01.037
  41. Remi Eismann, Decompostion into weight * level + jump and application to a new classification of primes (2007), arXiv:0711.0865.
  42. T. Eisner and R. Nagel, Arithmetic progressions-an operator theoretic view, Discrete and continuous dynamical systems series S, Volume 6, Number 3, June 2013 pp. 657-667; doi:10.3934/dcdss.2013.6.657
  43. Shalosh B. Ekhad, Nathaniel Shar, and Doron Zeilberger, The number of 1...d-avoiding permutations of length d+r for SYMBOLIC d but numeric r, arXiv:1504.02513, 2015.
  44. Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata, arXiv:1503.01796, 2015.
  45. Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.043249, 2015.
  46. S. B. Ekhad and D. Zeilberger, Proof of Conway's Lost Cosmological Theorem, Electronic Research Announcements of the Amer. Math. Soc. 3 (1997) 78-82.
  47. Shalosh B. Ekhad and Doron Zeilberger, "There are More Than 2n/17 n-Letter Ternary Square-Free Words", J. Integer Sequences, Volume 1, 1998, Article 98.1.9.
  48. Shalosh B. EKHAD and Doron ZEILBERGER, Automatic Solution of Richard Stanley's Amer. Math. Monthly Problem #11610 and ANY Problem of That Type, Arxiv preprint arXiv:1112.6207, 2011
  49. S. B. Ekhad and D. Zeilberger, Computational and Theoretical Challenges on Counting Solid Standard Young Tableaux, Arxiv preprint arXiv:1202.6229, 2012
  50. Shalosh B. EKHAD and Doron ZEILBERGER, Automatic Counting of Tilings of Skinny Plane Regions, Arxiv preprint arXiv:1206.4864, 2012
  51. Shalosh B. Ekhad, Doron Zeilberger, How to generate as many Somos-like miracles as you wish, arXiv:1303.5306
  52. Shalosh B. Ekhad and Doron Zeilberger, Automatic Proofs of Asymptotic Abnormality (and much more!) of Natural Statistics Defined on Catalan-Counted Combinatorial Families, arXiv:1403.5664, 2014.
  53. Shalosh B. Ekhad and Doron Zeilberger, Enumerative Geometrical Genealogy (Or: The Sex Life of Points and Lines), arXiv:1406.5157, 2014.
  54. Shalosh B. Ekhad, Doron Zeilberger, There are (1/30)(r+1)(r+2)(2r+3)(r^2+3r+5) Ways For the Four Teams of a World Cup Group to Each Have r Goals For and r Goals Against [Thanks to the Soccer Analog of Prop. 4.6.19 of Richard Stanley's (Classic!) EC1], arXiv:1407.1919, 2014.
  55. Shalosh B. EKHAD and Doron ZEILBERGER, The Generating Functions Enumerating 12...d-Avoiding Words with r occurrences of each of 1 , . . . , n are D-finite for all d and all r, http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimPDF/sloane75.pdf, 2014; also arXiv preprint arXiv:1412.2035, 2014
  56. S. B. Ekhad, D. Zeilberger, The Method(!) of GUESS and CHECK, arXiv preprint arXiv:1502.04377, 2015
  57. SB Ekhad, D Zeilberger, Explicit Expressions for the Variance and Higher Moments of the Size of a Simultaneous Core Partition and its Limiting Distribution, arXiv preprint arXiv:1508.07637, 2015
  58. SB Ekhad, D Zeilberger, Computerizing the Andrews-Fraenkel-Sellers Proofs on the Number of m-ary partitions mod m (and doing MUCH more!), arXiv preprint arXiv:1511.06791, 2015
  59. SB Ekhad, D Zeilberger, On the number of Singular Vector Tuples of Hyper-Cubical Tensors, arXiv preprint arXiv:1605.00172, 2016
  60. el Houcein el Abdalaoui, Mohamed Dahmoune and Djelloul Ziadi, On the transition reduction problem for finite automata, arXiv preprint arXiv:1301.3751, 2013
  61. Mohamed El Bachraoui and Florian Luca, On a Diophantine equation of Ayad and Kihel, Quaestiones Mathematicae, Volume 35, Issue 2, pages 235-243, 2012; doi:10.2989/16073606.2012.697265
  62. Miriam Mahannah El-Farrah, Expectation Numbers of Cyclic Groups, MS Thesis, Western Kentucky University, August 2015; http://digitalcommons.wku.edu/cgi/viewcontent.cgi?article=2520&context=theses
  63. Murray Elder, Cogrowth, http://carma.newcastle.edu.au/pdf/retreat2011/posters/MurrayElder-poster-A0.pdf.
  64. M. Elder, A. Kalka, Logspace computations for Garside groups of spindle type, arXiv preprint arXiv:1310.0933, 2013
  65. M. Elder, A. Rechnitzer, E. J. van Rensburg, T. Wong, The cogrowth series for BS(N, N) is D-finite, arXiv preprint arXiv:1309.4184, 2013
  66. M. Elhamdadi, Distributivity in Quandles and Quasigroups, arXiv preprint arXiv:1209.6518, 2012
  67. Elhamdadi, Mohamed; Macquarrie, Jennifer; Restrepo, Ricardo Automorphism groups of quandles. J. Algebra Appl. 11 (2012), no. 1, 1250008, 9 pp.
  68. Michele Elia, F Pintore, On the Representation of Primes by Binary Quadratic Forms, and Elliptic Curves, arXiv preprint arXiv:1604.06586, 2016
  69. S. Eliahou and M. J. Erickson, Mutually describing multisets and integer partitions, Discrete Mathematics, Volume 313, Issue 4, 28 February 2013, Pages 422-433.
  70. B. Elias, N. Proudfoot, M. Wakefield, The Kazhdan-Lusztig polynomial of a matroid, http://pages.uoregon.edu/njp/kl.pdf, 2014
  71. Sergi Elizalde, Generating trees for permutations avoiding generalized patterns (2007), arXiv:0707.4633; Annals of Combinatorics, Volume 11, Numbers 3-4 / December, 2007.
  72. Sergi Elizalde and Toufik Mansour, Restricted Motzkin permutations, Motzkin paths, continued fractions and Chebyshev polynomials (2006), arXiv:math/0610237.
  73. A. Elizarov, A. Kirillovich, E. Lipachev, O. Nevzorova, et al., Mathematical Knowledge Representation: Semantic Models and Formalisms, arXiv preprint arXiv: #, 2014
  74. Seymour B. Elk, Enumeration of the set of saturated compounds that, in theory, could be formed by the linear fusion of regular pentagonal modules, including the logical extrapolation to helicanes, Journal of Molecular Structure: THEOCHEM, Volume 201, November 1989, Pages 75-86.
  75. Elkies, Noam D. New directions in enumerative chess problems. Electron. J. Combin. 11 (2004/06), no. 2, Article 4, 14 pp.
  76. N. D. Elkies and R. P. Stanley, The mathematical knight, Math. Intelligencer, 25 (No. 1, 2003), 22-34. (PostScript, Pdf)
  77. David Ellerman, The number of direct-sum decompositions of a finite vector space, arXiv preprint arXiv:1603.07619, 2016
  78. David Ellerman, The Quantum Logic of Direct-Sum Decompositions, arXiv preprint arXiv:1604.01087, 2016
  79. G. Ellis and F. Lehmann, Exploiting the Induced Order on Type-Labeled Graphs for Fast Knowledge Retrieval, ICCS 1994, 293-310.
  80. C. Elsholtz, C. Heuberger, H. Prodinger, The number of Huffman codes, compact trees, and sums of unit fractions, arXiv:1108.5964
  81. Carsten Elsner, Dominic Klyve and Erik R. Tou, A zeta function for juggling sequences, Journal of Combinatorics and Number Theory, Volume 4, Issue 1, 2012, pp. 1-13; ISSN 1942-5600
  82. Andrew Elvey-Price and Anthony J. Guttmann, Permutations sortable by deques and by two stacks in parallel, http://arxiv.org/pdf/1508.02273v1.pdf, 2015.
  83. Cees H. Elzinga, M. Studer, Normalization of Distance and Similarity in Sequence Analysis in G. Ritschard & M. Studer (eds), Proceedings of the International Conference on Sequence Analysis and Related Methods, Lausanne, June 8-10, 2016, pp 445-468.
  84. Nathaniel D. Emerson, "A Family of Meta-Fibonacci Sequences Defined by Variable-Order Recursions", J. Integer Sequences, Volume 9, 2006, Article 06.1.8.
  85. James Emery, Number Theory, 2013; http://www.stem2.org/je/numbertheory.pdf
  86. Emmons, Caleb; Krebs, Mike; Shaheen, Anthony K-quasiderivations. Cent. Eur. J. Math. 10 (2012), no. 2, 824-834.
  87. Melissa Emory, The Diophantine equation X^4 + Y^4 = D^2 Z^4 in quadratic fields, INTEGERS 12 (2012), #A65.
  88. J. Endrullis, D. Hendriks and J. W. Klop. Degrees of streams, http://www.cs.vu.nl/~diem/publication/pdf/degrees.pdf
  89. Matthew England, James H Davenport, The complexity of cylindrical algebraic decomposition with respect to polynomial degree, arXiv preprint arXiv:1605.02494, 2016
  90. S. Engstrom, Random acyclic orientations of graphs, Master's thesis written at the department of Mathematics at the Royal Institute of Technology (KTH) in Stockholm, Jan. 2013; http://www.sci.kth.se/polopoly_fs/1.364961!/Menu/general/column-content/attachment/final_3_Random%20orientations.pdf.
  91. Enkosky, Thomas Counting points of slope varieties over finite fields. Electron. J. Combin. 18 (2011), no. 1, Paper 3, 11 pp.
  92. T. Enkosky, B. Stone, Sequences defined by h-vectors, arXiv preprint arXiv:1308.4945, 2013
  93. Peter L. Erdos, I Miklós, Z Toroczkai, New classes of degree sequences with fast mixing swap Markov chain sampling, arXiv preprint arXiv:1601.08224, 2016
  94. Gennady Eremin, Factoring a Catalan Number into Chebyshev's Segments, 2016; http://eremin.magekit.com/catalan-cheb-2016-en.pdf
  95. LARRY ERICKSEN AND PETER G. ANDERSON, PATTERNS IN DIFFERENCES BETWEEN ROWS IN k-ZECKENDORF ARRAYS, http://www.cs.rit.edu/~pga/k-zeck.pdf, 2012
  96. L. Ericksen, Iterated digit sums, recursions and primality, Acta Math. Univ. Ostrav. 14 (2006) 27-35
  97. A. Erickson, A. Isgur, B. W. Jackson, F. Ruskey and S. M. Tanny, Nested recurrence relations with Conolly-like solutions; http://webhome.cs.uvic.ca/~ruskey/Publications/MetaFib/ConollyLikeMay14.pdf.
  98. A. Erickson and F, Ruskey, Enumerating maximal tatami mat coverings of square grids with v vertical dominoes, arXiv preprint arXiv:1304.0070, 2013
  99. Alejandro Erickson and Mark Schurch, Monomer-dimer tatami tilings of square regions, Arxiv preprint arXiv:1110.5103, 2011
  100. Alejandro Erickson and Mark Schurch, Enumerating tatami mat arrangements of square grids, in 22nd International Workshop on Combinatorial Algorithms, University of Victoria, June 20-22, volume 7056 of Lecture Notes in Computer Science (LNCS), Springer Berlin / Heidelberg, 2011, pp. 223-235, doi:10.1007/978-3-642-25011-8_18
  101. N. Eriksen, Expected number of inversions after a sequence of random adjacent transpositions - an exact expression , Discr. Math., 298 (2005), 155-168. ("For the proof of Lemma 9, the author is indebted to Axel Hultman and Sloane's On-Line Encyclopedia of Integer Sequences")
  102. Mutiu F. Erinosho, ET Akinlabi, S Pityana, Effect of scanning speed and powder flow rate on the evolving properties of laser metal deposited Ti-6Al-4V/Cu composites, International Journal of Surface Science and Engineering, Volume 10, Issue 3, 2016; DOI: 10.1504/IJSURFSE.2016.076993
  103. Ernvall-Hytönen, Anne-Maria; Matomäki, Kaisa; Haukkanen, Pentti; Merikoski, Jorma K. Formulas for the number of gridlines. Monatsh. Math. 164 (2011), no. 2, 157-170 doi:10.1007/s00605-010-0236-6
  104. E Ershov, A Terekhin, D Nikolaev, V Postnikov, et al., Fast Hough transform analysis: pattern deviation from line segment, Proc. SPIE 9875, Eighth International Conference on Machine Vision (ICMV 2015), 987509 (December 8, 2015); doi:10.1117/12.2228852
  105. W. Ertel, Advanced Mathematics for Engineers, 2011; PDF
  106. Josef Eschgfäller, A Scarpante, Dichotomic random number generators, arXiv preprint arXiv:1603.08500, 2016
  107. E. Estrada and J. A. de la Pena, From Integer Sequences to Block Designs via Counting Walks in Graphs, arXiv preprint arXiv:1302.1176, 2013
  108. E. Estrada and J. A. de la Pena, Integer sequences from walks in graphs, Notes on Number Theory and Discrete Mathematics, Vol. 19, 2013, No. 3, 78-84
  109. Boumediene Et-Taoui, Complex Conference Matrices, Complex Hadamard Matrices and Complex Equiangular Tight Frames, in Convexity and Discrete Geometry Including Graph Theory, pp 181-191, Springer 2016; DOI: 10.1007/978-3-319-28186-5_16
  110. S. N. Ethier, Counting toroidal binary arrays, arXiv preprint arXiv:1301.2352, 2013
  111. S. N. Ethier and J. Lee, Parrondo games with spatial dependence, Arxiv preprint arXiv:1202.2609, 2012
  112. S. N. Ethier, J. Lee, Counting toroidal binary arrays, II, arXiv preprint arXiv:1502.03792, 2015
  113. SN Ethier, J Lee, Parrondo games with two-dimensional spatial dependence, arXiv preprint arXiv:1510.06947, 2015
  114. T. Etzion, On the stopping redundancy of Reed-Muller codes, arXiv:cs.IT/0511056, IEEE Trans. Inform. Theory 52 (2006), no. 11, 4867-4879.
  115. Eu, Sen-Peng; Fu, Tung-Shan, A simple proof of the Aztec diamond theorem. Electron. J. Combin. 12 (2005), Research Paper 18, 8 pp.
  116. Sen-Peng Eu, Tung-Shan Fu, Lattice paths and generalized cluster complexes, Journal of Combinatorial Theory, Series A, Volume 115, Issue 7, October 2008, Pages 1183-1210.
  117. Sen-Peng Eu, Tung-Shan Fu, Yu-Chang Liang, Tsai-Lien Wong, On xD-Generalizations of Stirling Numbers and Lah Numbers via Graphs and Rooks, Electronic Journal of Combinatorics 24(2) (2017), #P2.9
  118. Sen-Peng Eu, Tung-Shan Fu and Yeh-Jong Pan, A combinatorial proof of the cyclic sieving phenomenon for faces of Coxeterhedra, Journal of Combinatorial Optimization, 2012.
  119. Eu, Sen-Peng; Liu, Shu-Chung; Yeh, Yeong-Nan, Dyck paths with peaks avoiding or restricted to a given set. Stud. Appl. Math. 111 (2003), no. 4, 453-465.
  120. Eu, Sen-Peng; Liu, Shu-Chung; Yeh, Yeong-Nan, Odd or even on plane trees. Discrete Math. 281 (2004), no. 1-3, 189-196.
  121. Eu, Sen-Peng; Liu, Shu-Chung; Yeh, Yeong-Nan, On the congruences of some combinatorial numbers. Stud. Appl. Math. 116 (2006), no. 2, 135-144.
  122. S.-P. Eu, T.-S. Fu, Y.-J. Pan and C.-T. Ting, Baxter Permutations, Maj-balances, and Positive Braids, Electronic Journal of Combinatorics, 19(3) (2012), #P26
  123. Reinhardt Euler, "The Fibonacci Number of a Grid Graph and a New Class of Integer Sequences", J. Integer Sequences, Volume 8, 2005, Article 05.2.6.
  124. R. Euler, P. Oleksik, Z. Skupien, Counting Maximal Distance-Independent Sets in Grid Graphs, Discussiones Mathematicae Graph Theory. Volume 33, Issue 3, Pages 531-557, ISSN (Print) 2083-5892, DOI: 10.7151/dmgt.1707, July 2013.
  125. David E. Evans, Mathew Pugh, Spectral measures associated to rank two Lie groups and finite subgroups of GL(2,Z), arXiv preprint arXiv:1404.1877, 2014
  126. Ryan M. Evans, UN Katugampola, DA Edwards, Applications of fractional calculus in solving Abel-type integral equations: Surface-volume reaction problem, arXiv preprint arXiv:1510.00408, 2015
  127. G. Everest, arXiv:math.NT/0409540 Zsigmondy's Theorem for Elliptic Curves], 2002.
  128. G. Everest, A. J. van der Poorten, Y. Puri and T. Ward, "Integer Sequences and Periodic Points", J. Integer Sequences, Volume 5, 2002, Article 02.2.3.
  129. G. Everest, A. van der Poorten, I. Shparlinski and T. Ward , Recurrence Sequences, Amer. Math. Soc., 2003.
  130. C. J. Everett and P. R. Stein, The combinatorics of random walk with absorbing barriers, Discrete Mathematics, Volume 17, Issue 1, 1977, Pages 27-45.
  131. Martianus Frederic Ezerman, Bertrand Meyer and Patrick Sole, On Polynomial Pairs of Integers, arXiv:1210.7593. 2012.

About this page

  • This is part of the series of OEIS Wiki pages that list works citing the OEIS.
  • Additions to these pages are welcomed.
  • But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
  • If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
  • Works are arranged in alphabetical order by author's last name.
  • Works with the same set of authors are arranged by date, starting with the oldest.
  • This section lists works in which the first author's name begins with the letter E.
  • The full list of sections is: CiteA, CiteB, CiteC, CiteD, CiteE, CiteF, CiteG, CiteH, CiteI, CiteJ, CiteK, CiteL, CiteM, CiteN, CiteO, CiteP, CiteQ, CiteR, CiteS, CiteT, CiteU, CiteV, CiteW, CiteX, CiteY, CiteZ.
  • For further information, see the main page for Works Citing OEIS.
Retrieved from "http://oeis.org/wiki/CiteE"
Personal tools