This site is supported by donations to The OEIS Foundation.

CiteC

From OeisWiki

Jump to: navigation, search


Contents

CiteC

About this page

  • This is part of the series of OEIS Wiki pages that list works citing the OEIS.
  • Additions to these pages are welcomed.
  • But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
  • If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
  • Works are arranged in alphabetical order by author's last name.
  • Works with the same set of authors are arranged by date, starting with the oldest.
  • This section lists works in which the first author's name begins with the letter C.
  • The full list of sections is: CiteA, CiteB, CiteC, CiteD, CiteE, CiteF, CiteG, CiteH, CiteI, CiteJ, CiteK, CiteL, CiteM, CiteN, CiteO, CiteP, CiteQ, CiteR, CiteS, CiteT, CiteU, CiteV, CiteW, CiteX, CiteY, CiteZ.
  • For further information, see the main page for Works Citing OEIS.


References

  1. A. Cabello, L. E. Danielsen, A. J. Lopez-Tarrida and J. R. Portillo, Basic logical structures in quantum correlations, arXiv preprint arXiv:1211.5825, 2012
  2. A. Cabello, M. G. Parker, G. Scarpa and S. Severini, Exclusive disjunction structures and graph representatives of local complementation orbits, arXiv preprint arXiv:1211.4250, 2012
  3. A. Cabello, M. G. Parker, G. Scarpa, S. Severini, Exclusivity structures and graph representatives of local complementation orbits, 2013; http://www.ii.uib.no/~matthew/AMGS0613gianni.pdf
  4. F. Cachazo, S. He, E. Y. Yuan, Scattering in Three Dimensions from Rational Maps, arXiv preprint arXiv:1306.2962, 2013
  5. V. Cacic and V. Kovacs, On the share [fraction] of IL formulas that have normal forms, arXiv preprint arXiv:1309.3408, 2013
  6. C. Cafaro, D. Markham, P. van Loock, Scheme for constructing graphs associated with stabilizer quantum codes, arXiv preprint arXiv:1407.2777, 2014
  7. Andrea Caggegi, Alfonso Di Bartolo, Giovanni Falcone, Boolean 2-designs and the embedding of a 2-design in a group (2008); arXiv:0806.3433
  8. Libor Caha, Quantum 2-SAT in 1D geometry, Master's Thesis, MASARYK UNIVERSITY, FACULTY OF INFORMATICS, Brno, Autumn 2011; http://is.muni.cz/th/172519/fi_m/text.pdf
  9. A. R. Calderbank, P. Delsarte and N. J. A. Sloane, A Strengthening of the Assmus-Mattson Theorem, IEEE Trans. Information Theory, 37 (1991), pp. 1261-1268. (postscript, pdf)
  10. Chris K. Caldwell and Yuanyou Cheng, "Determining Mills' Constant and a Note on Honaker's Problem", J. Integer Sequences, Volume 8, 2005, Article 05.4.1.
  11. C. Caldwell and G. L. Honaker, Jr., "Palindromic prime pyramids," J. Recreational Math., 30:3 (1999-2000) 169-176. [ps, pdf, doc]
  12. C. Caldwell and G. L. Honaker, Jr., Is pi(6521)=6!+5!+2!+1! unique?, Math. Spectrum, 22:2 (2000/2001) 34-36. [ps, pdf, doc]
  13. Chris K. Caldwell, Angela Reddick, Yeng Xiong and Wilfrid Keller, "The History of the Primality of One: A Selection of Sources" (a dynamic survey), Journal of Integer Sequences, Vol. 15 (2012), #12.9.8.
  14. C. K. Caldwell and Y. Xiong, What is the smallest prime?, arXiv preprint arXiv:1209.2007, 2012
  15. N. Calkin and H. S. Wilf, Recounting the rationals, Amer. Math. Monthly, 107 (No. 4, 2000), pp. 360-363. (Only the printed version mentions the On-Line Encyclopedia of Integer Sequences.)
  16. J. Callaghan, J. J. Chew, III and S. M. Tanny, On the Behaviour of a Family of Meta-Fibonacci Sequences, SIAM J. Discrete Math. 18 (2005), no. 4, 794-824.
  17. David Callan, Certificates of Integrality for Linear Binomials, Fibonacci Quarterly, 38 (Aug 2000), 317-325.
  18. David Callan, "A Combinatorial Derivation of the Number of Labeled Forests", J. Integer Sequences, Volume 6, 2003, Article 03.4.7.
  19. Callan, David, A uniformly distributed statistic on a class of lattice paths. Electron. J. Combin. 11 (2004), no. 1, Research Paper 82, 8 pp.
  20. David Callan, "Counting Stabilized-Interval-Free Permutations", J. Integer Sequences, Volume 7, 2004, Article 04.1.8.
  21. David Callan, "A Combinatorial Interpretation for a Super-Catalan Recurrence", J. Integer Sequences, Volume 8, 2005, Article 05.1.8.
  22. David Callan, "A Combinatorial Interpretation of the Eigensequence for Composition", J. Integer Sequences, Volume 9, 2006, Article 06.1.4.
  23. David Callan, A Combinatorial Interpretation of j/n {kn}\choose{n+j} (2006), arXiv:math/0604471.
  24. David Callan, "On Generating Functions Involving the Square Root of a Quadratic Polynomial", J. Integer Sequences, Volume 10, 2007, Article 07.5.2.
  25. David Callan, Sets, Lists and Noncrossing Partitions (2007), arXiv:0711.4841.
  26. David Callan, A bijection on Dyck paths and its cycle structure, El. J. Combinat. 14 (2007) # R28
  27. David Callan, Klazar trees and perfect matchings (2008); arXiv:0810.4901
  28. David Callan, A combinatorial survey of identities for the double factorial, arXiv:0906.1317
  29. D. Callan, Pattern avoidance in "flattened" partitions, Discrete Math., 309 (2009), 4187-4191.
  30. D. Callan, A bijection to count (1-23-4)-avoiding permutations, arXiv:1108.2375
  31. D. Callan, The number of bar(2)413 bar(5)-avoiding permutations, arXiv:1110.6884
  32. D. Callan, A combinatorial interpretation of the Catalan transform of the Catalan numbers, arXiv:1111.0996
  33. D. Callan, The number of bar(31)542-avoiding permutations, arXiv:1111.3088
  34. D. Callan, A permutation pattern that illustrates the strong law of small numbers, arXiv:1111.6297
  35. D. Callan, A variant of Touchard's Catalan number identity, Arxiv preprint arXiv:1204.5704, 2012
  36. D. Callan, An identity for the central binomial coefficient, Arxiv preprint arXiv:1206.3174, 2012
  37. D. Callan, An application of a bijection of Mansour, Deng, and Du, arXiv preprint arXiv:1210.6455, 2012
  38. D. Callan (Proposer), Problem 11567, Amer. Math. Monthly, 120 (2013), 369-371.
  39. D. Callan, The number of {1243, 2134}-avoiding permutations, arXiv preprint arXiv:1303.3857, 2013
  40. David Callan, A sign-reversing involution to count labeled lone-child-avoiding trees, arXiv:1406.7784, 2014.
  41. D. Callan, On permutations avoiding the dashed patterns 32-41 and 41-32, arXiv preprint arXiv:1405.2064, 2014
  42. David Callan and Emeric Deutsch, The Run Transform, Arxiv preprint arXiv:1112.3639, 2011; Discrete Math., 312 (2012), 2927-2937.
  43. D. Callan, T. Mansour, M. Shattuck, Restricted ascent sequences and Catalan numbers, arXiv preprint arXiv:1403.6933, 2014
  44. F. Callegaro, G. Gaiffi, On models of the braid arrangement and their hidden symmetries, arXiv preprint arXiv:1406.1304, 2014
  45. C. S. Calude, E. Calude and M. J. Dinneen, What is the value of Taxicab(6)?, J. Universal Computer Science, 9 (2003), 1196-1203.
  46. Ian Cameron, Adam Rogers and Peter Loly, "The Library of Magical Squares" - a summary of the main results for the Shannon entropy of magic and Latin squares: isentropic clans and indexing, in celebration of George Styanís 75th", http://www.physics.umanitoba.ca/~icamern/Poland2012/Data/Bewedlo%20Codex.pdf.
  47. I. Cameron, A. Rogers, P. D. Loly, Signatura of magic and latin integer squares: isentropic clans and indexing, Discussiones Mathematicae, Probability and Statistics, 33 (2013) 121-125.
  48. Naiomi T. Cameron and Asamoah Nkwanta, "On Some (Pseudo) Involutions in the Riordan Group", J. Integer Sequences, Volume 8, 2005, Article 05.3.7.
  49. Cameron, Peter J. Some treelike objects. Quart. J. Math. Oxford Ser. (2) 38 (1987), no. 150, 155--183. MR0891613 (89a:05009).
  50. P. J. Cameron, Some sequences of integers, Discrete Math., 75 (1989), 89-102 ; also in "Graph Theory and Combinatorics 1988", ed. B. Bollobas, Annals of Discrete Math., 43 (1989), 89-102.
  51. P. J. Cameron, Counting two-graphs related to trees, Electronic Journal of Combinatorics, Volume 2(1), 1995, R#4.
  52. P. J. Cameron, Combinatorics: Topics, Techniques, Algorithms, Cambridge University Press, 1994 (reprinted 1996).
  53. P. J. Cameron, Stories about groups and sequences, in Special issue dedicated to Hanfried Lenz of Des. Codes Cryptogr. 8 (1996), no. 1-2, 109-133 (DVI or PostScript). Corrected reprint in op. cit. 8 (1996), no. 3, 109-133.
  54. P. J. Cameron, The algebra of an age, pp. 126-133 in Model Theory of Groups and Automorphism Groups (ed. D. M. Evans), London Mathematical Society Lecture Notes 244, Cambridge University Press, Cambridge, 1997. (dvi, ps)
  55. Peter J. Cameron, "Sequences Realized by Oligomorphic Permutation Groups", J. Integer Sequences, Volume 3, 2000, Article 00.1.5.
  56. P. J. Cameron, Homogeneous permutations, Electronic J. Combinatorics 9(2) (2002), #R2 (9pp).
  57. Cameron, Peter J. Research problems from the 19th British Combinatorial Conference. Discrete Math. 293 (2005), no. 1-3, 313-320.
  58. P. J. Cameron, D. A. Gewurz and F. Merola, Product action, Discrete Math., 308 (2008), 386-394.
  59. P. J. Cameron and C. R. Johnson, The number of equivalence patterns of symmetric sign patterns, Discr. Math., 306 (2006), 3074-3077.
  60. P. J. Cameron and D. A. Preece, Primitive lambda-roots, Combinatorics Study Group notes, March 2003.
  61. Peter Cameron, Thomas Prellberg and Dudley Stark, Asymptotic enumeration of incidence matrices (2005), arXiv:math/0511008.
  62. P. J. Cameron, T. Prellberg and D. Stark, Asymptotics for incidence matrix classes , Electron. J. Combin. 13 (2006), no. 1, Research Paper 85, 19 pp.
  63. Saverio Caminiti and Emanuele G. Fusco, "On the Number of Labeled k-arch Graphs", J. Integer Sequences, Volume 10, 2007, Article 07.7.5.
  64. Donald E. Campbell, Jack Graver and Jerry S. Kelly, There are more strategy-proof procedures than you think, Mathematical Social Sciences 64 (2012) 263-265.
  65. John M. Campbell, An Integral Representation of Kekule' Numbers, and Double Integrals Related to Smarandache Sequences, Arxiv preprint arXiv:1105.3399, 2011.
  66. Cezar Campeanu, Nelma Moreira and Rogerio Reis, Expected Compression Ratio for DFCA: experimental average case analysis, Technical Report Series: DCC-2011-07, December 2011, Departamento de Ciencia de Computadores, Universidade do Porto; http://www.dcc.fc.up.pt/dcc/Pubs/TReports/TR11/dcc-2011-07.pdf
  67. C. Canaan, M. S. Garai and M. Daya. All about Fibonacci: A python approach, 2011, preprint.
  68. E. Rodney Canfield, Carla D. Savage and Herbert S. Wilf, arXiv:math.CO/0308061 Regularly Spaced Subsums of Integer Partitions, Acta Arith. 115 (2004), no. 3, 205-216.
  69. E. Rodney Canfield, Herbert S. Wilf, Counting permutations by their alternating runs, arXiv:math/0609704, Journal of Combinatorial Theory, Series A, Volume 115, Issue 2, February 2008, Pages 213-225.
  70. C. Cannings, "The Stationary Distributions of a Class of Markov Chains," Applied Mathematics, Vol. 4 No. 5, 2013, pp. 769-773. doi:10.4236/am.2013.45105.
  71. C. Cannings, J. Haigh, Montreal Solitaire, Journal of Combinatorial Theory, Series A, Volume 60, Issue 1, May 1992, Pages 50-66.
  72. J. W. Cannon, W. J. Floyd, L. Lambert, W. R. Parry and J. S. Purcell, Bitwist manifolds and two-bridge knots, arXiv preprint arXiv:1306.4564, 2013
  73. Y. Cao, D. W. Casbeer, C. Schumacher, Reaching consensus in the sense of probability, in American Control Conference (ACC), 2013, Date of Conference: 17-19 June 2013, pp. 5415 - 5420; ISSN : 0743-1619; Print ISBN: 978-1-4799-0177-7; INSPEC Accession Number: 13809285
  74. Gabriel Cardona, Merce Llabres, Francesc Rossello et al., Nodal distances for rooted phylogenetic trees (2008); arXiv:0806.2035
  75. A. Cardoso, T. Veale, G. A. Wiggins, Converging on the Divergent: The History (and Future) of the International Joint Workshops in Computational Creativity, Association for the Advancement of Artificial Intelligence. ISSN 0738-4602; http://computationalcreativity.net/iccc2014/wp-content/uploads/2013/09/converging.pdf
  76. N. Carey, Lambda Words: A Class of Rich Words Defined Over an Infinite Alphabet, arXiv preprint arXiv:1303.0888, 2013
  77. Claude Carlet, Philippe Gaborit, Jon-Lark Kim and Patrick Sole, A new class of codes for Boolean masking of cryptographic computations, Arxiv preprint arXiv:1110.1193, 2011
  78. J. Carlsson and B. H. J. McKellar, SU(N) Glueball Masses in 2+1 Dimensions, arXiv:hep-lat/0303016, (2003).
  79. P. Caron, J.-M. Champarnaud and L. Mignot, Multi-tilde-bar expressions and their automata, Acta Informatica, September 2012, Volume 49, Issue 6, pp 413-436. doi:10.1007/s00236-012-0167-x.
  80. C. Carré, N. Debroux, M. Deneufchatel, J.-P. Dubernard et al., Dirichlet convolution and enumeration of pyramid polycubes, 2013; http://hal.archives-ouvertes.fr/docs/00/90/58/89/PDF/polycubes.pdf PDF]
  81. Cartwright, Dustin A.; Cueto, María Angélica; Tobis, Enrique A. The maximum independent sets of de Bruijn graphs of diameter 3. Electron. J. Combin. 18 (2011), no. 1, Paper 194, 18 pp.
  82. G. G. Cash, doi:10.1021/ci0300238 Immanants and Immanantal Polynomials of Chemical Graphs, J. Chem. Inf Comp. Sci. 43 (6) (2003) 1942-1946.
  83. Gordon G. Cash and Jerry Ray Dias, Computation, Properties and Resonance Topology of Benzenoid Monoradicals and Polyradicals and the Eigenvectors Belonging to Their Zero Eigenvalues, J. Math. Chem., 30 (2002), 429-444.
  84. Cassaigne, Julien; Ferenczi, Sébastien; Zamboni, Luca Q. Combinatorial trees arising in the study of interval exchange transformations. European J. Combin. 32 (2011), no. 8, 1428-1444.
  85. Castiglione, G.; Frosini, A.; Munarini, E.; Restivo, A.; Rinaldi, S., Combinatorial aspects of L-convex polyominoes. European J. Combin. 28 (2007), no. 6, 1724-1741.
  86. Castiglione, G.; Frosini, A.; Restivo, A.; Rinaldi, S., Enumeration of L-convex polyominoes by rows and columns. Theoret. Comput. Sci. 347 (2005), no. 1-2, 336-352.
  87. Jose Castillo, Other Smarandache type functions
  88. Jose Castillo, Smarandache continued fractions, (no date), http://www.gallup.unm.edu/~smarandache/CONT-FR.HTM
  89. F. N. Castro, O. E. González, L. A. Medina, The p-adic valuation of Eulerian numbers: trees and Bernoulli numbers, 2014; http://emmy.uprrp.edu/lmedina/papers/eulerian/EulerianFinal.pdf
  90. F. Castro-Velez, A. Diaz-Lopez, R. Orellana, J. Pastrana and R. Zevallos, Number of permutations with same peak set for signed permutations, arXiv preprint arXiv:1308.6621, 2013
  91. M. Catalani, Polymatrix and generalized polynacci numbers, (2002). arXiv:math.CO/0210201
  92. M. Catalani, Identities for Tribonacci-related sequences, (2002). arXiv:math.CO/0209179
  93. M. Catalani, Sequences related to convergents to square root of rationals, (2003). arXiv:math.NT/0305270
  94. M. Catalani, On the average of triangular numbers, (2003). arXiv:math.NT/0304160
  95. M. Catalani, Sequences related to the Pell generalized equation, (2003). arXiv:math.CO/0304062
  96. E. R. Cavalcanti and M. A. Spohn, On the applicability of mobility metrics for user movement pattern recognition in MANETs, in Proceeding MobiWac '13 Proceedings of the 11th ACM international symposium on Mobility management and wireless access, Pages 123-130, ACM New York, NY, USA 2013, ISBN: 978-1-4503-2355-0 doi:10.1145/2508222.2508228
  97. N. Cavenagh and P. Lisonek, Planar Eulerian triangulations are equivalent to spherical latin bitrades, J. Combin. Theory Ser. A 115 (2008), no. 1, 193-197. [Although the OEIS is not mentioned, the discovery in this paper was made using the OEIS.]
  98. N. J. Cavenagh and I. M. Wanless, On the number of transversals in Cayley tables of cyclic groups, Disc. Appl. Math. 158 (2010), 136-146.
  99. Geoffrey Caveney, Jean-Louis Nicolas and Jonathan Sondow, ROBIN'S THEOREM, PRIMES, AND A NEW ELEMENTARY REFORMULATION OF THE RIEMANN HYPOTHESIS, INTEGERS 11 (2011), #A33.
  100. G. Caveney, J.-L. Nicolas and J. Sondow, On SA, CA, and GA numbers, Ramanujan J., 29 (2012), 359-384 arXiv:1112.6010.
  101. F. Cazals, Combinatorial properties of one-dimensional arrangements. J. Exp. Math. 6, No.1, 87-94 (1997).
  102. F. Cazals, Combinatorics of Non-Crossing Configurations, Studies in Automatic Combinatorics, Volume II (1997).
  103. F. Cazals, Monomer-Dimer Tilings, Studies in Automatic Combinatorics, Vol. 2, 1997.
  104. C. Ceballos, F. Santos and G. M. Ziegler, Many non-equivalent realizations of the associahedron, Arxiv preprint arXiv:1109.5544, 2011
  105. M. Celaya, F. Ruskey, Morphic Words and Nested Recurrence Relations, arXiv preprint arXiv:1307.0153, 2013
  106. J. L. Cereceda, Generalized Akiyama-Tanigawa Algorithm for Hypersums of Powers of Integers, Journal of Integer Sequences, 16 (2013), #13.3.2.
  107. J. L. Cereceda, Iterative Procedure for Hypersums of Powers of Integers, Journal of Integer Sequences, 17 (2014), #14.5.3.
  108. Cerin, Zvonko, Some alternating sums of Lucas numbers. Cent. Eur. J. Math. 3 (2005), no. 1, 1-13 .
  109. Zvonko Cerin, "Sums of Squares and Products of Jacobsthal Numbers", J. Integer Sequences, Volume 10, 2007, Article 07.2.5.
  110. Z. Cerin, Formulae for sums of Jacobsthal-Lucas numbers. Int. Math. Forum 2 (2007), no. 37-40, 1969-1984.
  111. Zvonko Cerin, On factors of sums of consecutive Fibonacci and Lucas numbers, Annales Mathematicae et Informaticae, 41 (2013) pp. 19-25.
  112. Z. Cerin, Squares in Euler triples from Fibonacci and Lucas numbers, Cubo, 2013, vol. 15, no. 2, pp. 79-88. ISSN 0719-0646.
  113. J. Cernenoks and A. Cibulis, Application of IT in Mathematical Proofs and in Checking of Results of Pupils' Research, International Conference on Applied Information and Communication Technologies (AICT2013), 25.-26. April, 2013, Jelgava, Latvia; PDF
  114. Juris Cernenoks, Janis Iraids, Martins Opmanis, Rihards Opmanis, Karlis Podnieks, Integer Complexity: Experimental and Analytical Results II, arXiv:1409.0446, 2014
  115. Sung-Hyuk Cha, On the k-ary Tree Combinatorics, PDF
  116. Sung-Hyuk Cha, On Integer Sequences Derived from Balanced k-ary Trees, Applied Mathematics in Electrical and Computer Engineering, http://www.wseas.us/e-library/conferences/2012/CambridgeUSA/MATHCC/MATHCC-60.pdf, 2012.
  117. Sung-Hyuk Cha, On Complete and Size Balanced k-ary Tree Integer Sequences, INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS, Issue 2, Volume 6, 2012, pp. 67-75; http://naun.org/multimedia/UPress/ami/16-125.pdf.
  118. Sung-Hyuk Cha, On Parity based Divide and Conquer Recursive Functions; http://csis.pace.edu/~scha/IS/FOGKN.pdf, 2012.
  119. Sung-Hyuk Cha, Edgar G. DuCasse, and Louis V. Quintas, Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures, arXiv:1405.5283, 2014
  120. Yongjae Cha, Mark van Hoeij and Giles Levy, Solving Linear recurrence equations ISAAC'10 (2010)
  121. Yongjae Cha, Mark van Hoeij and Giles Levy, Solving Linear Recurrence Relations, SIGSAM Bulletin, Vol. 44, Issue 172, Number 2 June 2010; http://www.sigsam.org/bulletin/articles/172/CCA-172-full.pdf#page=8. "We have done an automated search in Sloane's online encyclopedia of integer sequences to find sequences that satisfy a second order recurrence."
  122. J. L. Chabert, doi:10.1016/j.ejc.2005.12.009 Integer-valued polynomials on prime numbers and logarithm power expansion. Eur. J. Combin. 26 (3) (2007) 754
  123. Jean-Luc Chabert and Paul-Jean Cahen, Old problems and new questions around integer-valued polynomials and factorial sequences, in Multiplicative Ideal Theory in Commutative Algebra, Springer-Verlag.
  124. Benjamin Chaffin and N. J. A. Sloane, The Curling Number Conjecture, arXiv:0912.2382
  125. Benjamin Chaffin, John P. Linderman, N. J. A. Sloane and Allan R. Wilks, On Curling Numbers of Integer Sequences, arXiv:1212.6102, 2012.
  126. Chaichanavong, Panu; Marcus, Brian H. Stabilization of block-type-decodability properties for constrained systems. SIAM J. Discrete Math. 19 (2005), no. 2, 321-344 .
  127. S. Chaiken, C. R. H. Hanusa, Th. Zaslavsky, doi:10.1007/s00026-011-0068-7 Nonattacking queens in a rectangular strip, Ann. Comb. 14 (2010) 4191-441.
  128. S. Chaiken, C. R. H. Hanusa and T. Zaslavsky, A q-queens problem I. General theory, January 26, 2013; http://www.math.binghamton.edu/zaslav/Tpapers/qq1.pdf.
  129. S. Chaiken, C. R. H. Hanusa, T. Zaslavsky, A q-queens problem III. Partial queens, http://www.math.binghamton.edu/zaslav/Tpapers/qqs3.pdf; February 19, 2014
  130. N. Chair, arXiv:hep-th/9808170 Explicit Computations for the Intersection Numbers on Grassmannians and on the Space of Holomorphic Maps from CP^1 into G_r(C^n), Trieste 1998, 16 p. (SISSA-ISAS 92/98/FM-EP).
  131. Chair, Noureddine, Intersection numbers on Grassmannians and on the space of holomorphic maps from CP^1 into G_r(C^n). J. Geom. Phys. 38 (2001), no. 2, 170-182.
  132. Chair, Noureddine, The Waring formula and fusion rings. J. Geom. Phys. 37 (2001), no. 3, 216-228.
  133. Noureddine Chair, Partition Identities From Partial Supersymmetry (2004), arXiv:hep-th/0409011.
  134. Russell Chamberlain, Sam Ginsburg, Manda Riehl and Chi Zhang, Generating Functions and Wilf-equivalence on Theta_k-embeddings, http://www.uwec.edu/surepam/SUREPAM%202011/Manda.pdf
  135. Marc Chamberland, "Binary BBP-Formulae for Logarithms and Generalized Gaussian-Mersenne Primes", J. Integer Sequences, Volume 6, 2003, Article 03.3.7.
  136. M. Chamberland, Factored matrices can generate combinatorial identities, http://www.math.grinnell.edu/~chamberl/papers/matrix_factoring.pdf. "Sequence recognition is supported by using the On-Line Encyclopedia of Integer Sequences (http://oeis.org/) or the Maple package gfun."
  137. Marc Chamberland and Christopher French, "Generalized Catalan Numbers and Generalized Hankel Transformations", J. Integer Sequences, Volume 10, 2007, Article 07.1.1.
  138. Marc Chamberland, Colin Johnson, Alice Nadeau, and Bingxi Wu, Multiplicative Partitions, Electronic Journal of Combinatorics, 20(2) (2013), #P57.
  139. Jean-Marc Champarnaud, Quentin Cohen-Solal, Jean-Philippe Dubernard, Hadrien Jeanne, Enumeration of Specific Classes of Polycubes, Electronic Journal of Combinatorics, 20(4) (2013), #P26.
  140. A. C. Chan, W. I. Gasarch and C. P. Kruskal, Refined Upper and Lower Bounds for Two-sum. 1997.
  141. Heng Huat Chan, Yoshio Tanigawa, Yifan Yang and Wadim Zudilin, New analogues of Clausen's identities arising from the theory of modular forms, Advances in Mathematics, Volume 228, Issue 2, 1 October 2011, Pages 1294-1314; doi:10.1016/j.aim.2011.06.011;
  142. Melody Chan, Tropical hyperelliptic curves, Arxiv preprint arXiv:1110.0273, 2011
  143. Melody T. Chan, Tropical curves and metric graphs, Ph. D. Dissertation, Univ. Calif. Berkeley, Spring 2012, http://math.berkeley.edu/~mtchan/thesis_mchan.pdf.
  144. O-Yeat Chan, Dante Manna, Divisibility properties of Stirling numbers of the second kind
  145. Swee Hong Chan, Henk D. L. Hollmann and Dmitrii V. Pasechnik, Critical groups of generalized de Bruijn and Kautz graphs and circulant matrices over finite fields, arXiv:1312.2114, 2013.
  146. S. H. Chan, H. D. L. Hollmann, D. V. Pasechnik, Sandpile groups of generalized de Bruijn and Kautz graphs and circulant matrices over finite fields, arXiv preprint arXiv:1405.0113, 2014
  147. Ray Chandler and Eugen J. Ionascu, A characterization of all equilateral triangles in Z^3 (2007), arXiv:0710.0708.
  148. Ray Chandler and Eugen J. Ionascu, A characterization of all equilateral triangles in Z^3 INTEGERS 8 (2008) #A19
  149. Shu-Chiuan Chang and Lung-Chi Chen, Spanning forests on the Sierpinski gasket (2006), arXiv:math-ph/0612083.
  150. Shu-Chiuan Chang, Jesper Lykke Jacobsen, Jesus Salas and Robert Shrock, Exact Potts Model Partition Functions for Strips of the Triangular Lattice, Journal of Statistical Physics, Volume 114, Numbers 3-4 / February, 2004.
  151. Shu-Chiuan Chang, Jesus Salas and Robert Shrock, Exact Potts Model Partition Functions for Strips of the Square Lattice, Journal of Statistical Physics, Volume 107, Numbers 5-6 / June, 2002.
  152. Shu-Chiuan Chang, Robert Shrock, Structural properties of Potts model partition functions and chromatic polynomials for lattice strips, Physica A: Statistical Mechanics and its Applications, Volume 296, Issues 1-2, 1 July 2001, Pages 131-182.
  153. Shu-Chiuan Chang and Robert Shrock, Flow Polynomials and Their Asymptotic Limits for Lattice Strip Graphs, Journal of Statistical Physics, Volume 112, Numbers 3-4 / August, 2003.
  154. Shu-Chiuan Chang, Robert Shrock, Transfer matrices for the partition function of the Potts model on lattice strips with toroidal and Klein-bottle boundary conditions, Physica A: Statistical Mechanics and its Applications, Volume 364, 15 May 2006, Pages 231-262.
  155. X.-K. Chang, X.-B. Hu and G.-F. Yu, An integrable semi-discrete equation and combinatorial numbers with their combinatorial interpretations, Journal of Difference Equations and Applications, 2012, doi:10.1080/10236198.2012.719024.
  156. Robin J. Chapman, Timothy Y. Chow, Amit Khetan et al., Simple formulas for lattice paths avoiding certain periodic staircase boundaries (2007), arXiv:0705.2888; Journal of Combinatorial Theory, Series A, Volume 116, Issue 1, January 2009, Pages 205-214.
  157. Chapoton, F., Sur le nombre d'intervalles dans les treillis de Tamari. Sém. Lothar. Combin. 55 (2005/06), Art. B55f, 18 pp.
  158. F. Chapoton, S. Giraudo, Enveloping operads and bicoloured noncrossing configurations, arXiv preprint arXiv:1310.4521, 2013
  159. F. Chapoton, F. Hivert, J.-C. Novelli, A set-operad of formal fractions and dendriform-like sub-operads, arXiv preprint arXiv:1307.0092, 2013
  160. F. Chapoton, Florent Hivert, Jean-Christophe Novelli et al., An operational calculus for the Mould operad (2007), arXiv:0710.0349.
  161. F. Chapoton and L. Manivel, Triangulations and Severi varieties, Arxiv preprint arXiv:1109.6490, 2011
  162. Chappelon, Jonathan; Matsuura, Akihiro On generalized Frame-Stewart numbers. Discrete Math. 312 (2012), no. 5, 830-836.
  163. V. Chari, L. Schneider, P. Shereen, J. Wand, Modules with Demazure flags and character formulae, arXiv preprint arXiv:1310.5191, 2013
  164. Emilie Charlier, Narad Rampersad, The growth function of S-recongizable sets, arXiv:1101.0036 [cs.FL]
  165. G. Chatel and V. Pons, Counting smaller elements in the Tamari and m-Tamari lattices, arXiv preprint arXiv:1311.3922, 2013
  166. Alain Chaumont and Tom Müller "All Elite Primes Up to 250 Billion", J. Integer Sequences, Volume 9, 2006, Article 06.3.8.
  167. C. Chauve, Structures arborescentes : problèmes algorithmiques et combinatoires, PHD thesis - LaBRI, Université Bordeaux 1 (2000).
  168. D. Chavarria-Miranda, A. Darte, R. Fowler and J. Mellor-Crummey, On efficient parallelization of line-sweep computations, Research Report 2001-45, Laboratoire de l'Informatique du Parallelisme, Ecole Normale Superiore de Lyon, November 2001.
  169. L. B. Chaves and P. A. Velloso, Teoria e pratica na busca de numeros primos de Mersenne, 1st Simposio Sul-Brasileiro de Matematica e Informatica Uniandrade.
  170. H. Cheballah , G. H. E. Duchamp and K. A. Penson, Approximate substitutions and the normal ordering problem (2008); arXiv:0802.1162.
  171. H. Cheballah, S. Giraudo, R. Maurice, Combinatorial Hopf algebra structure on packed square matrices, arXiv preprint arXiv:1306.6605, 2013
  172. Denis Chebikin and Richard Ehrenborg, The f-vector of the descent polytope, Disc. Comput. Geom., 45 (2011), 410-424.
  173. Denis Chebikin, Richard Ehrenborg, Pavlo Pylyavskyy et al., Cyclotomic factors of the descent set polynomial (2007), arXiv:0705.2451.
  174. B. F. Chen, E. Ghorbani, K. B. Wong, Cyclic decomposition of k-permutations and eigenvalues of the arrangement graphs, arXiv preprint arXiv:1308.5490, 2013
  175. C.-P. Chen and J. Choi, Asymptotic expansions for the constants of Landau and Lebesgue, Advances in Mathematics, Volume 254, 20 March 2014, Pages 622-641.
  176. Chen, Chao-Ping; Choi, Junesang. An Asymptotic Formula for (1+1/x)^x Based on the Partition Function. Amer. Math. Monthly 121 (2014), no. 4, 338--343. MR3183017.
  177. Chao-Ping Chen and Long Lin, Asymptotic expansions related to Glaisher-Kinkelin constant based on the Bell polynomials, Journal of Number Theory 133 (2013) 2699-2705.
  178. Hongwei Chen, "Evaluations of Some Variant Euler Sums", J. Integer Sequences, Volume 9, 2006, Article 06.2.3.
  179. Kwang-Wu Chen, "Algorithms for Bernoulli numbers and Euler numbers", J. Integer Sequences, Volume 4, 2001, Article 01.1.6.
  180. Kwang-Wu Chen, "An Interesting Lemma for Regular C-fractions", J. Integer Sequences, Volume 6, 2003, Article 03.4.8.
  181. Ricky X. F. Chen and Louis W. Shapiro, "On Sequences Gn Satisfying Gn = (d+2)Gn-1 - Gn-2", J. Integer Sequences, Volume 10, 2007, Article 07.8.1.
  182. W. Y. C. Chen, A. Y. L. Dai and R. D. P. Zhou, Ordered Partitions Avoiding a Permutation of Length 3, arXiv preprint arXiv:1304.3187, 2013
  183. William Y. C. Chen, Eva Y. P. Deng, Laura L. M. Yang, Riordan Paths and Derangements (2006), arXiv:math/0602298; Discrete Mathematics, Volume 308, Issue 11, 6 June 2008, Pages 2222-2227.
  184. Chen, William Y. C.; Fan, Neil J. Y.; Jia, Jeffrey Y. T. Labeled ballot paths and the Springer numbers. SIAM J. Discrete Math. 25 (2011), no. 4, 1530-1546.
  185. Chen, William Y. C.; Fan, Neil J. Y.; Jia, Jeffrey Y. T. The generating function for the Dirichlet series Lm(s). Math. Comp. 81 (2012), no. 278, 1005-1023.
  186. Chen, William Y. C.; Fan, Neil J. Y.; Zhao, Alina F. Y. Partitions and partial matchings avoiding neighbor patterns. European J. Combin. 33 (2012), no. 4, 491-504.
  187. William Y. C. Chen, Nelson Y. Li, Louis W. Shapiro, The Butterfly Decomposition of Plane Trees (2005), arXiv:math/0511045; Discrete Applied Mathematics, Volume 155, Issue 17, 15 October 2007, Pages 2187-2201.
  188. Chen, William Y. C.; Li, Nelson Y.; Shapiro, Louis W.; Yan, Sherry H. F. Matrix identities on weighted partial Motzkin paths. European J. Combin. 28 (2007), no. 4, 1196-1207.
  189. W. Y. C. Chen, L. H. Liu and C. J. Wang, Linked Partitions and Permutation Tableaux, arXiv preprint arXiv:1305.5357, 2013
  190. Chen, William Y. C.; Mansour, Toufik; Yan, Sherry H. F. Matchings avoiding partial patterns. Electron. J. Combin. 13 (2006), no. 1, Research Paper 112, 17 pp.
  191. W. Y. C. Chen, S. X. M. Pang, E. X. Y. Qu and R. P Stanley, Pairs of Noncrossing Free Dyck Paths and Noncrossing Partitions, arXiv:0804.2930; Discrete Math., 309 (2009), 2834-2838.
  192. William Y. C. Chen and Carol J. Wang, Noncrossing Linked Partitions and Large (3, 2)-Motzkin Paths, Discrete Math., 312 (2012), 1918-1922; http://www.billchen.org/publications/appear-noncrossing/appear-noncrossing.htm
  193. Chen, William Y. C.; Wang, David G. L. Singletons and adjacencies of set partitions of type B. Discrete Math. 311 (2011), no. 6, 418-422.
  194. William Y. C. Chen, Susan Y. J. Wu and Catherine Yan, Linked Partitions and Linked Cycles (2006), arXiv:math/0607719; European Journal of Combinatorics, Volume 29, Issue 6, August 2008, Pages 1408-1426.
  195. William Y. C. Chen, Sherry H. F. Yan, Laura L. M. Yang, Weighted 2-Motzkin Paths (2004), arXiv:math/0410200.
  196. William Y.C. Chen, Sherry H.F. Yan, Laura L.M. Yang, Identities from weighted Motzkin paths, Advances in Applied Mathematics, Volume 41, Issue 3, September 2008, Pages 329-334.
  197. Eddie Cheng, Marc J. Lipman, Laszlo Liptak, Strong structural properties of unidirectional star graphs, Discrete Applied Mathematics, Volume 156, Issue 15, 6 August 2008, Pages 2939-2949.
  198. Eddie Cheng, Ke Qiu and Zhizhang Shen, On the surface area of the augmented cubes, J. of Supercomputing, doi:10.1007/s11227-011-0641-1
  199. Cheng, Szu-En; Eu, Sen-Peng; Fu, Tung-Shan, Area of Catalan paths on a checkerboard. European J. Combin. 28 (2007), no. 4, 1331-1344.
  200. Eddie Cheng, Qiu Ke and Zhizhang Shen, On the Surface Area of the Asymmetric Twisted Cube, in COMBINATORIAL OPTIMIZATION AND APPLICATIONS, Lecture Notes in Computer Science, 2011, Volume 6831/2011, 411-423, doi:10.1007/978-3-642-22616-8_32
  201. S.-E. Cheng, S. Elizalde, A. Kasraoui and B. E. Sagan, Inversion polynomials for 321-avoiding permutations, http://math.msu.edu/~sagan/Papers/Old/ipt.pdf, 2012.
  202. S.-E. Cheng, S. Elizalde, A. Kasraoui and B. E. Sagan, Inversion polynomials for 321-avoiding permutations: addendum, arXiv preprint arXiv:1305.3845, 2013
  203. Gi-Sang Cheon, M.E.A. El-Mikkawy, Generalized harmonic numbers with Riordan arrays, Journal of Number Theory, Volume 128, Issue 2, February 2008, Pages 413-425.
  204. Gi-Sang Cheon and Sung-Tae Jin, Structural properties of Riordan matrices and extending the matrices, Linear Algebra and its Applications Volume 435, Issue 8, 15 October 2011, Pages 2019-2032, doi:10.1016/j.laa.2011.04.001
  205. G.-S. Cheon and S.-T. Jin, A unified combinatorial interpretation for Riordan matrices associated to the functional equations of higher degree, http://riordan01.skku.ac.kr/lab/ICMTA.pdf, 2012.
  206. Gi-Sang Cheon, Sung-Tae Jin, Hana Kim and Louis W. Shapiro, Riordan group involutions and the -sequence, Discrete Applied Mathematics, Volume 157, Issue 8, 28 April 2009, Pages 1696-1701.
  207. Gi-Sang Cheon and Ji-Hwan Jung, r-Whitney numbers of Downing lattices, Discrete Math., 312 (2012), 2337-2348.
  208. Gi-Sang Cheon and Hana Kim, Simple proofs of open problems about the structure of involutions in the Riordan group, Linear Algebra and its Applications, Volume 428, Issue 4, 1 February 2008, Pages 930-940.
  209. Gi-Sang Cheon, Hana Kim and Louis W. Shapiro, Riordan group involutions, Linear Algebra and its Applications, Volume 428, Issue 4, 1 February 2008, Pages 941-952.
  210. Gi-Sang Cheon, Hana Kim and Louis W. Shapiro, A generalization of Lucas polynomial sequence, Discrete Applied Mathematics, Volume 157, Issue 5, 6 March 2009, Pages 920-927.
  211. Gi-Sang Cheon, Hana Kim and Louis W. Shapiro, Combinatorics of Riordan arrays with identical A and Z sequences, Discrete Math., 312 (2012), 2040-2049.
  212. Gi-Sang Cheon, Sang-Gu Lee and Louis W. Shapiro, The Fine numbers refined, European Journal of Combinatorics, In Press, Corrected Proof, Available online 16 June 2009.
  213. Gi-Sang Cheon and Toufik Mansourb, Rational combinations for the sums involving inverse binomial coefficients, Applied Mathematics and Computation, Volume 218, Issue 6, 15 November 2011, Pages 2641-2646; http://www.sciencedirect.com/science/article/pii/S0096300311010290; http://math.haifa.ac.il/toufik/toupap11/q11ap2011_24.pdf.
  214. Gi-Sang Cheon and Louis Shapiro, The uplift principle for ordered trees, Applied Mathematics Letters, 28 November 2011; doi:10.1016/j.aml.2011.11.018
  215. Otfried Cheong and Mira Lee, The Hadwiger Number of Jordan Regions is Unbounded (2007), arXiv:cs/0702079; Discrete and Computational Geometry, Volume 37, Number 4 / May, 2007.
  216. B. Chern, P. Diaconis, D. M. Kane, R. C. Rhoades, Closed expressions for averages of set partition statistics, http://math.stanford.edu/~rhoades/FILES/setpartitions.pdf, 2013.
  217. H.-H. Chern, H.-K. Hwang, T.-H. Tsai, Random unfriendly seating arrangement in a dining table, arXiv preprint arXiv:1406.0614, 2014
  218. Philippe A. J. G. Chevalier, On the discrete geometry of physical quantities, Preprint, 2013 (mentions A045778, A008451, A000141, ...).
  219. N. Chheda, M. K. Gupta, RNA as a Permutation, arXiv preprint arXiv:1403.5477, 2014
  220. G. Chiaselotti, W. Keith, P. A, Oliverio, Two Self-Dual Lattices of Signed Integer Partitions, Appl. Math. Inf. Sci. 8, No. 6, 3191-3199 (2014).
  221. Andrew M. Childs, Pawel Wocjan, On the quantum hardness of solving isomorphism problems as nonabelian hidden shift problems (2005), arXiv:quant-ph/0510185.
  222. L. N. Childs, A Concrete Introduction to Higher Algebra, Springer-Verlag.
  223. P. Z. Chinn, R. Grimaldi and S. Heubach, Rises, Levels, Drops and "+" Signs in Compositions, to appear in Fibonacci Quarterly.
  224. P. Z. Chinn, R. Grimaldi and S. Heubach, The Frequency of Summands of a Particular Size in Palindromic Compositions, Ars Combin. 69 (2003), 65-78.
  225. Phyllis Chinn, Ralph Grimaldi and Silvia Heubach, "Tiling with L's and Squares", J. Integer Sequences, Volume 10, 2007, Article 07.2.8.
  226. Phyllis Chinn and Silvia Heubach, "Integer Sequences Related to Compositions without 2's", J. Integer Sequences, Volume 6, 2003, Article 03.2.3.
  227. P. Z. Chinn and S. Heubach, Compositions of n with no occurrence of k, preprint (submitted to Congressus Numerantium).
  228. P. Z. Chinn and S. Heubach, (1,k)-Compositions, preprint (submitted to Congressus Numerantium).
  229. P. Z. Chinn and D. R. Oliver, Some Results Inspired by Covering Rectangles with 1x1 and 1x3 Rectangles, Congr. Numerantium 122, 119-124 (1996).
  230. F.A. Chishtie, K.M. Rao, I.S. Kotsireas et al., An investigation of uniform expansions of large order Bessel functions in Gravitational Wave Signals from Pulsars (2006), arXiv:astro-ph/0611035.
  231. B. Chitturi, W. Fahle, Z. Meng, L. Morales, C.O. Shields, I.H. Sudborough, W. Voit, An (18/11)n upper bound for sorting by prefix reversals, Theoretical Computer Science, In Press, Corrected Proof, Available online 10 May 2008.
  232. Y.B. Choe, K.T. Huber, J.H. Koolen, Y.S. Kwon, V. Moulton, Counting vertices and cubes in median graphs of circular split systems, European Journal of Combinatorics, Volume 29, Issue 2, February 2008, Pages 443-456.
  233. Choi, Gyoung-Sik; Hwang, Suk-Geun; Kim, Ik-Pyo; Shader, Bryan L. (+-1)-invariant sequences and truncated Fibonacci sequences. Linear Algebra Appl. 395 (2005), 303-312.
  234. J. Choi, N. Pippenger, Counting the Angels and Devils in Escher's Circle Limit IV, arXiv preprint arXiv:1310.1357, 2013
  235. S. Choi and H. Park, A new graph invariant arises in toric topology, arXiv preprint arXiv:1210.3776, 2012
  236. C.-P. Chou and H. A. Witek, An Algorithm and FORTRAN Program for Automatic Computation of the Zhang-Zhang Polynomial of Benzenoids, MATCH: Commun. Math. Comput. Chem, 68 (2012) 3-30; http://www.pmf.kg.ac.rs/match/electronic_versions/match68/n1/match68n1_3-30.pdf
  237. C.-P. Chou, H. A. Witek, ZZDecomposer: A Graphical Toolkit for Analyzing the Zhang-Zhang Polynomials of Benzenoid Structures, MATCH: Communications in Mathematical and in Computer Chemistry. 71 (2014) 741-764.
  238. R. Choulet, Wenn ich von Kultur in Mathematik hoere.., 39th Congress of the SBPM, 2013
  239. Chak-On Chow, doi:10.1016/j.aam.2007.07.002 On certain combinatorial expansions of the Eulerian polynomials, Advances in Applied Mathematics, Volume 41, Issue 2, August 2008, Pages 133-157.
  240. C.-O. Chow and S.-M. Ma, Counting signed permutations by their alternating runs, Discrete Mathematics, Volume 323, 28 May 2014, Pages 49-57
  241. D. D. K. Chow, G. Compère, Black holes in N=8 supergravity from SO(4,4) hidden symmetries, arXiv preprint arXiv:1404.2602, 2014 ["The function H(psi) was found by first expanding F in terms of the sum and difference of squares of electric and magnetic charges in a perturbation series. The Taylor coeffcients of the function H(psi) were then recognized as belonging to a hypergeometric series using an algorithm for integer sequence recognition (the OEIS), then simplified in terms of trigonometric functions."]
  242. Stirling Chow and Frank Ruskey, "Minimum Area Venn Diagrams Whose Curves Are Polyominoes", Mathematics Magazine, Vol. 80, (2007) pp. 91-103.
  243. Stirling Chow, Frank Ruskey, Gray codes for column-convex polyominoes and a new class of distributive lattices, Discrete Mathematics, 309 (2009), 5284-5297.
  244. T. Y. Chow, Review of "Bonichon, Nicolas; Bousquet-Melou, Mireille; Fusy, Eric; Baxter permutations and plane bipolar orientations. Sem. Lothar. Combin. 61A (2009/10), Art. B61Ah, 29 pp.", MathSciNet Review MR2734180 (2011m:05023). (The review mentions the OEIS although the article does not.)
  245. T. Y. Chow, H. Eriksson and C. K. Fan, Chess tableaux, Elect. J. Combin., 11 (2) (2005), #A3. [T. Y. Chow writes that although they forgot to mention it in the paper, the OEIS helped them discover the main theorem.]
  246. T. Y. Chow, C. K. Fan, M. X. Goemans and J. Vondrak, Wide partitions, Latin tableaux and Rota's basis conjecture, Advances in Applied Math. 31 (2003), 334-358. [Mentions Superseeker]
  247. Julie Christophe, Jean-Paul Doignon and Samuel Fiorini, "Counting Biorders", J. Integer Sequences, Volume 6, 2003, Article 03.4.3.
  248. Wenchang Chu, Three Combinatorial Sequences Derivable from the Lattice Path Counting, Annals of Discrete Mathematics, Volume 52, 1992, Pages 81-92.
  249. K. S. Chua, The root lattice A*_n and Ramanujan's circular summation of theta functions, Proc. Amer. Math. Soc. 130 (2002), no. 1, 1-8.
  250. F. R. K. Chung, R. L. Graham, V. E. Hoggatt Jr., M. Kleiman, The number of baxter permutations, Journal of Combinatorial Theory, Series A, Volume 24, Issue 3, May 1978, Pages 382-394.
  251. V. Chvatal, Notes on the Kolakoski Sequence, DIMACS Technical Report 93-84, December 1993.
  252. Frederic Chyzak and Alexis Darrasse, DynaMoW, an OCaml language extension for the run-time generation of mathematical contents and their presentation on the web, http://ddmf.msr-inria.inria.fr/download/DynaMoW-ICFP11.pdf.
  253. F. Chyzak and A. Darrasse, Using Camlp4 for Presenting Dynamic Mathematics on the Web: DynaMoW, an OCaml Language Extension for the Run-Time Generation of Mathematical Contents and their Presentation on the Web, ACM SIGPLAN Notices, 2011; http://dl.acm.org/citation.cfm?id=2034809.
  254. F. Chyzak, I. Gutman and P. Paule, Predicting the number of hexagonal systems with 24 and 25 hexagons, Communications in Mathematical and Computer Chemistry, no. 40, p. 139-151.
  255. Chyzak, Frédéric; Mishna, Marni; Salvy, Bruno, Effective scalar products of D-finite symmetric functions. J. Combin. Theory Ser. A 112 (2005), no. 1, 1-43.
  256. Johann Cigler, Some results and conjectures about recurrence relations for certain sequences of binomial sums (2006), arXiv:math.CO/0611189.
  257. Johann Cigler, Recurrence relations for powers of q-Fibonacci polynomials (2008); arXiv:0806.0805
  258. Johann Cigler, Some conjectures about q-Fibonacci polynomials (2008); arXiv:0805.0415
  259. Johann Ciger, Fibonacci polynomials, generalized Stirling numbers,.., arXiv:1103.2610
  260. J. Cigler, Some nice Hankel determinants. Arxiv preprint arXiv:1109.1449, 2011. See also http://homepage.univie.ac.at/johann.cigler/preprints/hankel-conjectures.pdf
  261. J. Cigler, Continued fractions associated with q-Schroeder-like numbers, http://homepage.univie.ac.at/johann.cigler/preprints/schroeder-rama.pdf, 2012. Also arXiv preprint arXiv:1210.0372.
  262. J. Cigler, Hankel determinants of some polynomial sequences, PDF, 2012.
  263. J. Cigler, Some q-analogues of Fibonacci, Lucas and Chebyshev polynomials with nice moments, 2013; http://homepage.univie.ac.at/johann.cigler/preprints/cheb-survey.pdf
  264. J. Cigler, Some remarks about q-Chebyshev polynomials and q-Catalan numbers and related results, http://homepage.univie.ac.at/Johann.Cigler/preprints/chebyshev-survey.pdf, 2013.
  265. J. Cigler, Some notes on q-Gould polynomials, 2013; PDF
  266. J. Cigler, Some remarks on lattice paths in strips along the x-axis; http://homepage.univie.ac.at/johann.cigler/preprints/lattice-paths.pdf, 2014.
  267. Javier Cilleruelo and Florian Luca, On the sum of the first n primes, Q. J. Math. 59:4 (2008), 14 pp.
  268. A. Cintrón-Arias, A. Godbole, A decade of undergraduate research for all East Tennessee State University mathematics majors, Involve, a Journal of Mathematics, 2014, Vol. 7:3 (2014).
  269. Mircea I. Cirnu, Determinantal formulas for sum of generalized arithmetic-geometric series, Boletin de la Asociacion Matematica Venezolana, Vol. XVIII, No. 1 (2011), p. 13; http://www.emis.de/journals/BAMV/conten/vol18/BAMV_XVIII-1_p015-028.pdf.
  270. Barry Cipra, doi:10.1126/science.327.5968.943 What comes next?, Science vol. 327 no. 5968 (19 Feb 2010) p 943.
  271. A. Claesson, Generalized Pattern Avoidance, FPSAC01, European Journal of Combinatorics 22 (2001), 961-971. (PostScript, Pdf)
  272. Anders Claesson, Mark Dukes and Martina Kubitzke, Partition and composition matrices, arXiv:1006.1312.
  273. Claesson, Anders; Jelínek, Vít; Jelínková, Eva; Kitaev, Sergey Pattern avoidance in partial permutations. Electron. J. Combin. 18 (2011), no. 1, Paper 25, 41 pp.
  274. A. Claesson, S. Kitaev and A. de Mier, An involution on bicubic maps and beta(0,1)-trees, arXiv preprint arXiv:1210.3219, 2012
  275. Anders Claesson, Sergey Kitaev, Kari Ragnarsson et al., Boolean complexes for Ferrers graphs (2008); arXiv:0808.2307
  276. Anders Claesson and Svante Linusson, "n! matchings, n! posets", Proc. Amer. Math. Soc. 139 (2011), 435-449; doi:10.1090/S0002-9939-2010-10678-0.
  277. Anders Claesson and Toufik Mansour, Permutations avoiding a pair of generalized patterns of the form x-yz or xy-z (2001), arXiv:math/0107044.
  278. A. Claesson and T. Mansour, Counting occurrences of a pattern of type (1,2) or (2,1) in permutations, Accepted for publication in Advances in Applied Mathematics. (PostScript, Pdf, Dvi)
  279. A. Claesson and T. Mansour, Enumerating Permutations Avoiding a Pair of Babson-Steingrímsson Patterns, (ps, pdf) Ars Combin. 77 (2005), 17-31.
  280. A. Claesson and T. K. Petersen, Conway's Napkin Problem, American Mathematical Monthly, 114 (No. 3, 2007), 217-231.
  281. Daniel T. Clancy and Steven J. Kifowit, A Closer Look at Bobo's Sequence, College Math. J., 45 (2014), 199-206.
  282. Lieven Clarisse, Sibasish Ghosh, Simone Severini et al., Entangling Power of Permutations (2005), arXiv:quant-ph/0502040.
  283. Lane Clark, "An Asymptotic Expansion for the Catalan-Larcombe-French Sequence", J. Integer Sequences, Volume 7, 2004, Article 04.2.1.
  284. Sean Clark, Anton Preslicka, Josh Schwartz and Radoslav Zlatev, Some combinatorial conjectures on a family of toric ideals: A report from the MSRI 2011 Commutative Algebra graduate workshop.
  285. Tyler Clark and Tom Richmond, The Number of Convex Topologies on a Finite Totally Ordered Set, 2013, to appear in Involve; http://people.wku.edu/tom.richmond/Papers/CountConvexTopsFTOsets.pdf
  286. W. Edwin Clark, Mohamed Elhamdadi, Xiang-dong Hou, Masahico Saito and Timothy Yeatman, Connected Quandles Associated with Pointed Abelian Groups, Arxiv preprint arXiv:1107.5777, 2011
  287. W. Edwin Clark and Xiang-dong Hou, Galkin Quandles, Pointed Abelian groups and sequence A000712, arXiv:1108.2215
  288. J. C. Claussen, doi:10.1063/1.2939398 Time evolution of the rule 150 cellular automaton activity from a Fibonacci iteration, J. Math. Phys 49 (2008)
  289. Clift, Neill Michael Calculating optimal addition chains. Computing 91 (2011), no. 3, 265-284.
  290. Benoit Cloitre, Chemins dans un tableau arithmetique, 2007.
  291. B. Cloitre, arXiv:1107.0812 A tauberian approach to RH, 2011
  292. B. Cloitre, On the fractal behavior of primes, 2011; http://bcmathematics.monsite-orange.fr/FractalOrderOfPrimes.pdf
  293. Benoit Cloitre, N. J. A. Sloane and Matthew J. Vandermast, "Numerical Analogues of Aronson's Sequence", J. Integer Sequences, Volume 6, 2003, Article 03.2.2.
  294. S. Cockburn and J. Lesperance, Deranged socks, Mathematics Magazine, 86 (2013), 97-109.
  295. P. Codara, O. M. D'Antona, P. Hell, A simple combinatorial interpretation of certain generalized Bell and Stirling numbers, arXiv preprint arXiv:1308.1700, 2013. Also Codara, Pietro; D'Antona, Ottavio M.; Hell, Pavol. A simple combinatorial interpretation of certain generalized Bell and Stirling numbers. Discrete Math. 318 (2014), 53--57. MR3141626.
  296. Pietro Codara, Ottavio M. D'Antona and Vincenzo Marra, Best Approximation of Ruspini Partitions in Gˆdel Logic, in Symbolic and Quantitative Approaches to Reasoning with Uncertainty, Lecture Notes in Computer Science, Volume 4724/2007, Springer-Verlag.
  297. Pietro Codara, Ottavio M. D'Antona and Vincenzo Marra, An analysis of Ruspini partitions in Gˆdel logic, International Journal of Approximate Reasoning, Volume 50, Issue 6, June 2009, Pages 825-836.
  298. Pietro Codara, Ottavio M. D'Antona, Francesco Marigo, Corrado Monti, arXiv:1307.1348, Making simple proofs simpler
  299. M. Codish, L. Cruz-Filipe, P. Schneider-Kamp, The Quest for Optimal Sorting Networks: Efficient Generation of Two-Layer Prefixes, arXiv preprint arXiv:1404.0948, 2014
  300. Michael Codish, Alice Miller, Patrick Prosser and Peter Stuckey, Breaking Symmetries in Graph Representation. International Joint Conference on Artificial Intelligence (IJCAI 2013). Beijing, China, August 2013. To appear.
  301. M. W. Coffey, V. de Angelis, A. Dixit, V. H. Moll, et al., The Zagier polynomials. Part II: Arithmetic properties of coefficients, PDF, 2013.
  302. A. M. Cohen, Communicating mathematics across the web, pp. 283-300 of B. Engquist and W. Schmid, editors, Mathematics Unlimited - 2001 and Beyond, 2 vols., Springer-Verlag, 2001.
  303. A. M. Cohen, H. Cuypers, E. Reinaldo Barreiro and H. Sterk, Interactive Mathematical Documents on the Web, to appear in Proceedings of Dagstuhl Conference.
  304. D. Cohen, Machine Head, New Scientist, 24 Feb 2001, Vol. 169, Number 2279, pp. 26-29. (Article about artificial intelligence that mentions the database.)
  305. G. L. Cohen and D. E. Iannucci, "Derived Sequences", J. Integer Sequences, Volume 6, 2003, Article 03.1.1.
  306. Gerard Cohen and Jean-Pierre Flori, On a generalized combinatorial conjecture involving addition mod 2^k-1, Cryptology eprint archive 2011/400
  307. Jonathan D. Cohen, Concepts and Algorithms for Polygonal Simplification, SIGGRAPH 99 Course Tutorial #20: Interactive Walkthroughs of Large Geometric Datasets. pp. C1-C34. 1999. also in SIGGRAPH 2000 Course Tutorial.
  308. M. Cohen and M. Teicher, Kauffman's clock lattice as a graph of perfect matchings: a formula for its height, http://u.math.biu.ac.il/~cohenm10/talks/MosheCohenPreprintClockOct.pdf, 2012.
  309. C. Coker, A family of eigensequences, Discrete Math., 282 (2004), 249-250.
  310. Coker, Curtis, Enumerating a class of lattice paths. Discrete Math. 271 (2003), no. 1-3, 13-28.
  311. S. Cokus, Summing Sums Symbolically: How Computers Revolutionized the Field of Combinatorial Identities, ACMS Seminar, Winter Quarter 2001.
  312. MICAH SPENCER COLEMAN, ASYMPTOTIC ENUMERATION IN PATTERN AVOIDANCE AND IN THE THEORY OF SET PARTITIONS AND ASYMPTOTIC UNIFORMITY, PDF
  313. C. S. Collberg and T. A. Proebsting, AlgoVista - A Search Engine for Computer Scientists, Arizona Computer Science, Technical Report, 2000.
  314. C. S. Collberg and T. A. Proebsting, Problem Classification using Program Checking, Fun with Algorithms 2, May 2001.
  315. Collberg, Christian S.; and Proebsting, Todd A., Problem identification using program checking. Discrete Appl. Math. 144 (2004), no. 3, 270-280.
  316. A. Collins et al., Binary words, n-color compositions and ..., Fib. Quarterly, 51 (2013), 130-136.
  317. BENOIT COLLINS, ION NECHITA AND DEPING YE, THE ABSOLUTE POSITIVE PARTIAL TRANSPOSE PROPERTY FOR RANDOM INDUCED STATES, Arxiv preprint arXiv:1108.1935, 2011
  318. G. E. Collins and W. Krandick, On the computing time of the continued fractions method, Journal of Symbolic Computation, Volume 47, Issue 11, November 2012, Pages 1372-1412.
  319. P. Colomb, A. Irlande and O. Raynaud, Counting of Moore Families for n=7, International Conference on Formal Concept Analysis (2010), http://pierre.colomb.me/data/paper/icfca2010.pdf
  320. Pierre Colomb, Alexis Irlande, Olivier Raynaud and Yoan Renaud, About the Recursive Decomposition of the lattice of co-Moore Families, http://www.colomb.me/pierre/data/paper/icfca2011.pdf. Probably the following is essentially the same paper: P. Colomb, A. Irlande, O. Raynaud and Y. Renaud, Recursive decomposition and bounds of the lattice of Moore co-families, Annals of Mathematics and Artificial Intelligence, February 2013, Volume 67, Issue 2, pp 109-122.
  321. P. Colomb, A. Irlande, O. Raynaud, Y. Renaud, Recursive decomposition tree of a Moore co-family and closure algorithm, Annals of Mathematics and Artificial Intelligence, 2013, doi:10.1007/s10472-013-9362-x.
  322. Simon Colton, "Refactorable Numbers - A Machine Invention", J. Integer Sequences, Volume 2, 1999, Article 99.1.2.
  323. S. Colton, Theory Formation Applied to Learning, Discovery and Problem Solving, presented at Machine Intelligence 17, Bury St. Edmunds, July 2000.
  324. S. Colton, An Application-based Comparison of Automated Theory Formation and Inductive Logic Programming, Electronic Transactions on Artificial Intelligence, Vol. 4 (2000), Section B, pp. 97-117.
  325. S. Colton, Automated Theory Formation Applied to Four Learning Tasks, Linkoping Electronic Articles in Computer and Information Science, Vol. 5 (2000): nr 38.
  326. S. Colton, Automated Theorem Discovery: A Future Direction for Theorem Provers, Proceedings of the IJCAR workshop on Future Directions in Automated Reasoning, Siena, Italy, 2001.
  327. S. Colton, Mathematics - a new domain for datamining?, Proc IJCAI-01, Seattle, 2001
  328. Colton, Simon, Automated conjecture making in number theory using HR, Otter and Maple. J. Symbolic Comput. 39 (2005), no. 5, 593-615.
  329. S. Colton, A. Bundy and T. Walsh, HR - A system for machine discovery in finite algebra, Proceedings of the machine discovery workshop, European Conference on Artificial Intelligence, 1998. (postscript)
  330. S. Colton, A. Bundy and T. Walsh, Automated Discovery in Pure Mathematics, Proceedings of the ECAI-98 workshop on machine discovery, 1998.
  331. S. Colton, A. Bundy and T. Walsh, Automatic Concept Formation in Pure Mathematics. Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, 1999. (postscript)
  332. S. Colton, A. Bundy and T. Walsh, On the Notion of Interestingness in Automated Mathematical Discovery, to appear in the Special Issue of the International Journal of Human Computer Studies, 2000.
  333. S. Colton, A. Bundy and T. Walsh, Automatic Invention of Integer Sequences, in Proceedings, Seventeenth National Conference on Artificial Intelligence (Austin, Texas, July 30 - June 5, 2000), AAAI Press, 2000, to appear. [Winner of prize paper award] (postscript)
  334. S. Colton, A. Bundy and T. Walsh, Automatic identification of mathematical concepts, Proc ICML-2000, Stanford, CA, 2000.
  335. S. Colton and L. Dennis, The NumbersWithNames Program, 7th International Symposium on Artificial Intelligence and Mathematics, 2002.
  336. S. Colton and G. Steel, Artificial Intelligence and Scientific Creativity , Quarterly Journal of the Society for the Study of Artificial Intelligence and the Simulation of Behaviour, Volume 102, Summer/Autumn 1999.
  337. Marius Coman, The Math Encyclopedia of Smarandache Type Notions, Vol. 1, Number Theory, 2013; http://www.rxiv.org/pdf/1311.0097v1.pdf; Education Publishing, Columbus, OH, 2013, 134 pages
  338. L. Comtet, Advanced Combinatorics, Reidel, 1974.
  339. Marston Conder, George Havas and M. F. Newman, On one-relator quotients of the modular group, in Groups St Andrews 2009 in Bath (proceedings), vol. 1, London Math. Society Lecture Note Series, No. 387, Cambridge University Press, pp. 183-197.
  340. A. Conflitti, C. M. Da Fonseca and R. Mamede, doi:10.1016/j.laa.2011.07.043 The maximal length of a chain ... Lin. Algebra Applic. (2011)
  341. Alessandro Conflitti, C. M. da Fonseca and Ricardo Mamede, On the Largest Size of an Antichain in the Bruhat Order for A(2k,k), ORDER, 2011, doi:10.1007/s11083-011-9241-1
  342. Alessandro Conflitti, C. M. Da Fonseca and Ricardo Mamede, The maximal length of a chain in the Bruhat order for a class of binary matrices, http://www.mat.uc.pt/preprints/ps/pre1118.ps
  343. ALESSANDRO CONFLITTI, C. M. DA FONSECA AND RICARDO MAMEDE, On the largest size of an antichain in the Bruhat order for A(2k, k), http://www.mat.uc.pt/preprints/ps/pre1125.ps.
  344. Matthew M. Conroy, "A Sequence Related to a Conjecture of Schinzel", J. Integer Sequences, Volume 4, 2001, Article 01.1.7.
  345. J. H. Conway, "On Happy Factorizations", J. Integer Sequences, Volume 1, 1998, Article 98.1.1.
  346. J. H. Conway, E. M. Rains, N. J. A. Sloane, On the existence of similar sublattices, arXiv:math/0207177
  347. J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389.
  348. David Cook II, Nauty in Macaulay2, arXiv:1010.6194 [math.CO]
  349. David Cook II, Nested colourings of graphs, arXiv preprint arXiv:1306.0140, 2013
  350. M. Cook and M. Kleber, arXiv:math.CO/0002220 Tournament sequences and Meeussen sequences, Electronic Journal of Combinatorics, Vol. 7(1) 2000, article #R44.
  351. Michael Coons, An Irrationality Measure for Regular Paperfolding Numbers, Journal of Integer Sequences, Vol. 15 (2012), Article #12.1.6
  352. M. Coons, J. Shallit, doi:10.1016/j.disc.2011.07.029 A pattern sequence approach to Stern's sequence, Disc. Math. 311 (22) (2011) 2630-2633
  353. Alec S. Cooper, Oleg Pikhurko, John R. Schmitt, Gregory S. Warrington, Martin Gardner's minimum no-3-in-a-line problem, arXiv:1206.5350 [math.CO].
  354. C. Cooper and M. Wiemann, Divisibility of an F-L Type Convolution, Applications of Fibonacci Numbers, Volume 9.
  355. J. Cooper and A. Dutle, Greedy Galois Games, Amer. Math. Mnthly, 120 (2013), 441-451.
  356. J. N. Cooper and A. W. N. Riasanovsky, On the Reciprocal of the Binary Generating Function for the Sum of Divisors; http://www.math.sc.edu/~cooper/Sigma.pdf, 2012.
  357. J. Copeland and J. Haemer, Odds and Ends, SunExpert, May 1999, pp. 50-53.
  358. J. Copeland and J. Haemer, High-School Algebra, Backwards, SunExpert, Feb 2001, pp. 34-37.
  359. Tom Copeland, Lagrange a la Lah, at http://tcjpn.wordpress.com/
  360. Tom Copeland, Mathemagical Forests, at http://tcjpn.wordpress.com/
  361. R. Coquereaux, Quantum McKay correspondence and global dimensions for fusion and module-categories associated with Lie groups, arXiv preprint arXiv:1209.6621, 2012
  362. R. B. Corcino, K. J. M. Gonzales, M. J. C. Loquias and E. L. Tan, Dually weighted Stirling-type sequences, arXiv preprint arXiv:1302.4694, 2013
  363. Robert Cori, Indecomposable permutations, hypermaps and labeled Dyck paths, Journal of Combinatorial Theory, Series A, In Press, Corrected Proof, Available online 21 May 2009.
  364. R. Cori, G. Hetyei, Counting genus one partitions and permutations, arXiv preprint arXiv:1306.4628, 2013
  365. R. Cori, G. Hetyei, How to count genus one partitions, FPSAC 2014, Chicago, Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France, 2014, 333-344; http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/article/viewFile/dmAT0130/4488
  366. R. M. Corless, Symbolic Computation in Nonlinear Dynamics, Proceedings of Let's Face Chaos Through Nonlinear Dynamics, Ljubljana, Slovenia, 1993.
  367. Ruth Corran , Matthieu Picantin, A new Garside structure for braid groups of type (e,e,r) (2009) arXiv:0901.0645
  368. B. Correll, The density of Costas arrays and three-free permutations, in Statistical Signal Processing Workshop (SSP), 2012 IEEE, Date of Conference: 5-8 Aug. 2012, Pages 492 - 495.
  369. Sylvie Corteel and Pawe Hitczenko, "Generalizations of Carlitz Compositions", J. Integer Sequences, Volume 10, 2007, Article 07.8.8.
  370. J. B. Cosgrave and K. Dilcher, An Introduction to Gauss Factorials, The American Mathematical Monthly, 118 (Nov. 2011), 812-829.
  371. J. B. Cosgrave and K. Dilcher, The Gauss-Wilson theorem for quarter-intervals, Acta Mathematica Hungarica, Sept. 2013; doi:10.1007/s10474-013-0357-1.
  372. John B. Cosgrave and Karl Dilcher, The multiplicative orders of certain Gauss factorials, II, Preprint, 2014.
  373. G. E. Cossali, "A Common Generating Function for Catalan Numbers and Other Integer Sequences", J. Integer Sequences, Volume 6, 2003, Article 03.1.8.
  374. D. Coupier, A. Desolneux and B. Ycart, Image Denoising by Statistical Area Thresholding, Journal of Mathematical Imaging and Vision, Volume 22, Numbers 2-3 / May, 2005.
  375. M. A. Covington, The number of distinct alignments of two strings, (pdf, ps), Journal of Quantitative Linguistics, 2004, to appear.
  376. John R. Cowles and Ruben Gamboa, Verifying Sierpinski and Riesel Numbers in ACL2, Arxiv preprint arXiv:1110.4671, 2011
  377. Darrell Cox, The 3n + 1 Problem: A Probabilistic Approach, Journal of Integer Sequences, Vol. 15 (2012), #12.5.2.
  378. D. A. Cox and J. Shurman, Geometry and number theory on clovers, Amer. Math. Monthly, 112 (2005), 682-704.
  379. James Cranch, Representing and Enumerating Two-Dimensional Pasting Diagrams, http://jdc41.user.srcf.net/research/pasting/Pasting.pdf, 2013.
  380. Selden Crary, Factorization of the Determinant of the Gaussian-Covariance Matrix of Evenly Spaced Points Using an Inter-dimensional Multiset Duality, arXiv preprint arXiv:1406.6326, 2014
  381. Andrew Crites, Enumerting pattern avoidance for affine permutations, El. J. Combinat. 17 (2010) #R127
  382. Cropper, Sebrina Ruth, "Ranking Score Vectors of Tournaments" (2011). All Graduate Reports and Creative Projects. Paper 91. Utah State University, School of Graduate Studies, http://digitalcommons.usu.edu/gradreports/91
  383. S. Crowley, Some Fractal String and Hypergeometric Aspects of the Riemann Zeta Function, http://www.vixra.org/abs/1202.0066, 2012
  384. Stephen Crowley, A Mysterious Three Term Integer Sequence Related to a Lambert W Function Solution to a Certain Transcendental Equation
  385. S. Crowley, Mellin and Laplace Integral Transforms Related to the Harmonic Sawtooth Map and a Diversion Into The Theory Of Fractal Strings, http://vixra.org/pdf/1202.0079v2.pdf, 2012
  386. Stephen Crowley, Two new zeta constants: fractal string, continued fraction and hypergeometric aspects of the Riemann Zeta Function, arXiv:1207.1126
  387. S. Crowley, Integral Transforms of the Harmonic Sawtooth Map, The Riemann Zeta Function, Fractal Strings, and a Finite Reflection Formula, arXiv preprint arXiv:1210.5652, 2012
  388. J. Cummings, D. Kral, F. Pfender, K. Sperfeld et al., Monochromatic triangles in three-coloured graphs, Arxiv preprint arXiv:1206.1987. 2012.
  389. Michael Cuntz, Integral modular data and congruences (2006), arXiv:math/0611233; Journal of Algebraic Combinatorics, Volume 29, Number 3 / May, 2009.
  390. K. K. A. CUNNINGHAM, T. J. EDGAR, A. G. HELMINCK, B. F. JONES, H. OH, R. SCHWELL and J. F. VASQUEZ, On the Structure of Involutions and Symmetric Spaces of Dihedral Groups, arXiv:1205.3207, 2012
  391. B. Curry, G. A. Wiggins and G. Hayes, Representing trees with constraints, Lloyd, J. (ed.) et al., Computational Logic- CL 2000. 1st International Conference, London, GB, July 24-28, 2000. Proceedings. Berlin: Springer. Lect. Notes Comput. Sci. 1861, 315-325 (2000). Also another version. doi:10.1007/3-540-44957-4_21
  392. T. L. Curtright, D. B. Fairlie, C. K. Zachos, A compact formula for rotations as spin matrix polynomials, arXiv preprint arXiv:1402.3541, 2014
  393. T. L. Curtright, T. S. Van Kortryk, On Rotations as Spin Matrix Polynomials, arXiv:1408.0767, 2014.
  394. Luisa Cutillo, Giuseppe De Marco and Chiara Donnini, Networks of Financial Contagion, Advanced Dynamic Modeling of Economic and Social Systems, Studies in Computational Intelligence Volume 448, 2013, pp 31-48; doi:10.1007/978-3-642-32903-6_4.
  395. Aleksandar Cvetkovic, Predrag Rajkovic and Milos Ivkovic, "Catalan Numbers, the Hankel Transform and Fibonacci Numbers", J. Integer Sequences, Volume 5, 2002, Article 02.1.3.
  396. Cvetkovic, Dragos; Fowler, Patrick; Rowlinson, Peter; Stevanovic, Dragan, Constructing fullerene graphs from their eigenvalues and angles. Special issue on algebraic graph theory (Edinburgh, 2001). Linear Algebra Appl. 356 (2002), 37-56.
  397. Predrag Cvitanovic, Asymptotic estimates and gauge invariance, Nuclear Physics B, Volume 127, Issue 1, 22 August 1977, Pages 176-188.
  398. P. Cvitanovic', Group Theory, webbook.
  399. Eva Czabarka, Peter L. Erdos, Virginia Johnson, Anne Kupczok and Laszlo A. Szekely, Asymptotically normal distribution of some tree families relevant for phylogenetics, and of partitions without singletons, Arxiv preprint arXiv:1108.6015, 2011

About this page

  • This is part of the series of OEIS Wiki pages that list works citing the OEIS.
  • Additions to these pages are welcomed.
  • But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
  • If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
  • Works are arranged in alphabetical order by author's last name.
  • Works with the same set of authors are arranged by date, starting with the oldest.
  • This section lists works in which the first author's name begins with the letter C.
  • The full list of sections is: CiteA, CiteB, CiteC, CiteD, CiteE, CiteF, CiteG, CiteH, CiteI, CiteJ, CiteK, CiteL, CiteM, CiteN, CiteO, CiteP, CiteQ, CiteR, CiteS, CiteT, CiteU, CiteV, CiteW, CiteX, CiteY, CiteZ.
  • For further information, see the main page for Works Citing OEIS.
Retrieved from "http://oeis.org/wiki/CiteC"
Personal tools