This site is supported by donations to The OEIS Foundation.

CiteBa

From OeisWiki
Jump to: navigation, search


CiteBa

About this page

  • This is part of the series of OEIS Wiki pages that list works citing the OEIS.
  • Additions to these pages are welcomed.
  • But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
  • If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
  • Works are arranged in alphabetical order by author's last name.
  • Works with the same set of authors are arranged by date, starting with the oldest.
  • This section lists works in which the first author's name begins with Ba to Bh.
  • The full list of sections is: A Ba Bi Ca Ci D E F G H I J K L M N O P Q R Sa Sl T U V W X Y Z.
  • For further information, see the main page for Works Citing OEIS.

References

  1. E. Baake, M. Baake, M. Salamat, The general recombination equation in continuous time and its solution, arXiv preprint arXiv:1409.1378, 2014
  2. Michael Baake and Michael Coons, A natural probability measure derived from Stern's diatomic sequence, arXiv:1706.00187 [math.NT], 2017.
  3. M. Baake, F. Gahler and U. Grimm, Examples of substitution systems and their factors, arXiv preprint arXiv:1211.5466, 2012; Journal of Integer Sequences, Vol. 16 (2013), #13.2.14.
  4. M. Baake and U. Grimm, arXiv:cond-mat/9706122 Coordination sequences for root lattices and related graphs, Zeit. f. Kristallographie, 212 (1997), 253-256.
  5. Michael Baake, Uwe Grimm, Manuela Heuer et al., Coincidence rotations of the root lattice A_4 (2007), arXiv:0709.1341; European Journal of Combinatorics, Volume 29, Issue 8, November 2008, Pages 1808-1819.
  6. M. Baake, U. Grimm, J. Nilsson, Scaling of the Thue-Morse diffraction measure, arXiv preprint arXiv:1311.4371, 2013
  7. Michael Baake, Manuela Heuer, Robert V. Moody, Similar sublattices of the root lattice A_4 (2007), arXiv:math/0702448; Journal of Algebra, Volume 320, Issue 4, 15 August 2008, Pages 1391-1408.
  8. M. Baake and R. V. Moody, Similarity submodules and root systems in four dimensions, Canadian Journal of Mathematics (1999), Vol 51 No 6, pp. 1258-1276.
  9. Michael Baake and Natascha Neumaerker, A note on the relation between fixed point and orbit count sequences (2008) arXiv:0812.4354 and JIS 12 (2009) 09.4.4.
  10. Michael Baake, Natascha Neumarker and John A. G. Roberts, ORBIT STRUCTURE AND (REVERSING) SYMMETRIES OF TORAL ENDOMORPHISMS ON RATIONAL LATTICES, http://web.maths.unsw.edu.au/~jagr/BNR11.pdf.
  11. Michael Baake, John A. G. Roberts, Alfred Weiss, Periodic orbits of linear endomorphisms on the 2-torus and its lattices (2008); arXiv:0808.3489
  12. Nils A. Baas, A Stacey, Investigations of Higher Order Links, arXiv preprint arXiv:1602.06450, 2016
  13. L. Babai and P. J. Cameron, Automorphisms and enumeration of switching classes of tournaments, The Electronic Journal of Combinatorics, Volume 7(1), 2000, R#38.
  14. B. Babcock, Revisiting the spreading and covering numbers, arXiv:1109.5847, 2011
  15. Babcock, Ben; Van Tuyl, Adam Revisiting the spreading and covering numbers. Australas. J. Combin. 56 (2013), 77-84.
  16. Martin Bača, Susana-Clara López, Francesc-Antoni Muntaner-Batle, Andrea Semaničová-Feňovčíková, The n-queens problem: a new approach, arXiv:1703.09942 [math.CO], 2017.
  17. Silvia Bacchelli, Luca Ferrari, Renzo Pinzani et al., Mixed succession rules: the commutative case (2008); arXiv:0806.0799 and J. Comb. Theory A 117 (5) (2010) 568-582 doi:10.1016/j.jcta.2009.11.005
  18. Eric Bach and Lev Borisov, Absorption Probabilities for the Two-Barrier Quantum Walk (2009) arXiv:0901.4349
  19. Eric Bach, Jeremie Dusart, Lisa Hellerstein, Devorah Kletenik, Submodular Goal Value of Boolean Functions, arXiv:1702.04067 [cs.DM], 2017.
  20. E Bach, R Fernando, Infinitely Many Carmichael Numbers for a Modified Miller-Rabin Prime Test, arXiv preprint arXiv:1512.00444, 2015
  21. QT Bach, R Paudyal, JB Remmel, A Fibonacci analogue of Stirling numbers, arXiv preprint arXiv:1510.04310, 2015
  22. Quang T. Bach, Roshil Paudyal, Jeffrey B. Remmel, Q-analogues of the Fibo-Stirling numbers, arXiv:1701.07515, 2017
  23. QT Bach, JB Remmel, Generating functions for descents over permutations which avoid sets of consecutive patterns, arXiv preprint arXiv:1510.04319, 2015
  24. QT Bach, JB Remmel, Descent c-Wilf Equivalence, arXiv preprint arXiv:1510.07190, 2015
  25. A. Bacher, Directed and multi-directed animals on the square lattice with next nearest neighbor edges, arXiv preprint arXiv:1301.1365, 2013
  26. Axel Bacher, Improving the Florentine algorithms: recovering algorithms for Motzkin and Schröder paths, arXiv:1802.06030 [cs.DS], 2018. (A000108, A001003, A001006, A001405, A005773, A006318, A026003, A247623)
  27. Bacher, Axel; Bernini, Antonio; Ferrari, Luca; Gunby, Benjamin; Pinzani, Renzo; West, Julian. The Dyck pattern poset. Discrete Math. 321 (2014), 12--23. MR3154009.
  28. Axel Bacher, O Bodini, HK Hwang, TH Tsai, Generating random permutations by coin-tossing: classical algorithms, new analysis and modern implementation, preprint, 2016; http://140.109.74.92/hk/wp-content/files/2016/03/rand-perm-2016-v1.pdf
  29. Roland Bacher, Fair Triangulations (2007), arXiv:0710.0960.
  30. Roland Bacher, On generating series of complementary planar trees (2004), arXiv:math/0409050.
  31. R. Bacher, Twisting the Stern sequence, arXiv:1005.5627
  32. Roland Bacher, Counting Packings of Generic Subsets in Finite Groups, Electr. J. Combinatorics, 19 (2012), #P7.
  33. Roland Bacher, Counting invertible Schrodinger Operators over Finite Fields for Trees, Cycles and Complete Graphs, preprint https://hal.archives-ouvertes.fr/hal-01025881v3, 2015.
  34. R Bacher, Chebyshev polynomials, quadratic surds and a variation of Pascal's triangle, arXiv preprint arXiv:1509.09054, 2015
  35. Roland Bacher, On the number of perfect lattices, 2017. hal-01503749v1; https://hal.archives-ouvertes.fr/hal-01503749v1 (only version 1 refers to the OEIS)
  36. Roland Bacher, P De La Harpe, Conjugacy growth series of some infinitely generated groups. 2016. hal-01285685v2; https://hal.archives-ouvertes.fr/hal-01285685/document
  37. Roland Bacher and Philippe Flajolet, Pseudo-factorials, elliptic functions, and continued fractions (2009) arXiv:0901.1379 and Ramanujan J. 21 (1) (2010) 71-97 doi:doi.org/10.1007/s11139-009-9186-9
  38. R. Bacher and D. Garber, arXiv:math.GT/0205245 Spindle configurations of skew lines, Geom. Topol. 11 (2007), 1049-1081.
  39. Bacher, R.; Krattenthaler, C. Chromatic statistics for triangulations and Fuß-Catalan complexes. Electron. J. Combin. 18 (2011), no. 1, Paper 152, 16 pp.
  40. R. Bacher, C. Reutenauer, The number of right ideals of given codimension over a finite field, in Noncommutative Birational Geometry, Representations and Combinatorics, edited by Arkady. Berenstein and Vladimir. Retakha, Contemporary Mathematics, Vol. 592, 2013.
  41. R Bacher, C Reutenauer, Number of right ideals and a q-analogue of indecomposable permutations, arXiv preprint arXiv:1511.00426, 2015
  42. Bacher, Roland and Schaeffer, Gilles, On generating series of coloured planar trees. Sém. Lothar. Combin. 55 (2005/06), Art. B55e, 20 pp.
  43. R. Bacher and C. Krattenthaler, Chromatic statistics for triangulations and FussCatalan complexes, Electronic Journal of Combinatorics, 18 (2011), #P152.
  44. J Backelin, Sizes of the extremal girth 5 graphs of orders from 40 to 49, arXiv preprint arXiv:1511.08128, 2015
  45. Dave Bacon, Andrew M. Childs, Wim van Dam, Optimal measurements for the dihedral hidden subgroup problem (2005), arXiv:quant-ph/0501044.
  46. D. Baczkowski, J. Eitner, C. E. Finch, B. Suminski, M. Kozek, Polygonal, Sierpinski, and Riesel numbers, Journal of Integer, 2015 Vol 18. #15.8.1.
  47. C. Badea, On some criteria of irrationality for series of positive rationals : a survey, in Actes de rencontres Arithmetiques de Caen (a la memoire de Roger Apery), 2-3 juin 1995, 1-14.
  48. IVAN BADINSKKI, CHRISTOPHER HUFFAKER, NATHAN MCCUE, CAMERON N. MILLER, KAYLA S. MILLER, STEVEN J. MILLER, AND MICHAEL STONE, The M&M Game: From Morsels to Modern Mathematics, arXiv preprint arXiv:1508.06542, 2015
  49. Dzmitry Badziahin, Jeffrey Shallit, An Unusual Continued Fraction, preprint arXiv:1505.00667, 2015 (A006519, A100338, A100865, A100864)
  50. HUNKI BAEK, SEJEONG BANG, DONGSEOK KIM, AND JAEUN LEE, A bijection between aperiodic palindromes and connected circulant graphs, arXiv:1412.2426, 2014
  51. Arpan Bagchi, Encoding and avoiding 2-connected patterns in polygon dissections and outerplanar graphs, J. Phys.: Conf. Ser. 965 012007 (2018). doi:10.1088/1742-6596/965/1/012007 (A001006)
  52. O. Bagdasar, On some functions involving the lcm and gcd of integer tuples, SCIENTIFIC PUBLICATIONS OF THE STATE UNIVERSITY OF NOVI PAZAR, SER. A: APPL. MATH. INFORM. AND MECH. vol. 1, 1 2014. [Another reference gives a different volume number: SER. A: APPL. MATH. INFORM. AND MECH. vol. 6, 2 (2014), 91-100.]
  53. O. Bagdasar, On certain computational and geometric properties of complex Horadam orbits, ANTS 2014, https://ants2014.kookmin.ac.kr/ANTS_2014_poster_Bagdasar.pdf
  54. Ovidiu Bagdasar and Dorin Andrica, New results and conjectures on 2-partitions of multisets, 2017 7th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO). doi:10.1109/ICMSAO.2017.7934928
  55. O. D. Bagdasar and P. J. Larcombe, On the number of complex Horodam sequences ..., Fib. Q., 51 (2013), 339-347.
  56. Ovidiu D. Bagdasar and Larcombe, Peter J., "On the masked periodicity of Horadam sequences: a generator-based approach", Fib. Q., 55 (2017), 332-339
  57. Ovidiu Bagdasar, I.-L. Popa, On the geometry of certain periodic non-homogeneous Horadam sequences, Electronic Notes in Discrete Mathematics 56 (2016) 7–13; doi:10.1016/j.endm.2016.11.002
  58. Marco Baggio, Vasilis Niarchos, Kyriakos Papadodimas, Gideon Vos, Large-N correlation functions in N = 2 superconformal QCD, arXiv preprint arXiv:1610.07612, 2016
  59. Aaron R. Bagheri, Classifying the Jacobian Groups of Adinkras, (2017), HMC Senior Theses.
  60. Fatemeh Bagherzadeh and Murray Bremner, Commutativity in double interchange semigroups, arXiv:1706.04693 [math.RA], 2017.
  61. Fatemeh Bagherzadeh, M Bremner, S Madariaga, Jordan Trialgebras and Post-Jordan Algebras, arXiv preprint arXiv:1611.01214, 2016
  62. Connor Behan, Conformal manifolds: ODEs from OPEs, arXiv preprint arXiv:1709.03967, 2017. [“We have guessed (2.21) with the help of OEIS [38]. However, a proof should be possible with the technology of [39].”]
  63. Maryam Bahrani and Jérémie Lumbroso, Enumerations, Forbidden Subgraph Characterizations, and the Split-Decomposition, arXiv:1608.01465, 2016.
  64. Sen Bai, X Bai, X Che, X Wei, Maximal Independent Sets in Heterogeneous Wireless Ad Hoc Networks, IEEE Transactions on Mobile Computing (Volume: 15, Issue: 8, Aug. 1 2016), 2023 - 2033
  65. Alex Bailey, Martin Finn-Sell, Robert Snocken, Subsemigroup, ideal and congruence growth of free semigroups, arXiv preprint arXiv:1409.2444, 2014
  66. D. H. Bailey, Book Reviews, Math. Comp. 65 (1996), 877-895.
  67. D. H. Bailey, Compendium to BBP formulas
  68. D. H. Bailey and J. M. Borwein, Experimental mathematics: recent developments and future outlook, pp. 51-66 of B. Engquist and W. Schmid, editors, Mathematics Unlimited - 2001 and Beyond, 2 vols., Springer-Verlag, 2001 [ps or pdf].
  69. D. H. Bailey and J. M. Borwein, Experimental mathematics: examples, methods and implications, Notices Amer. Math. Soc. 52 (2005), 502-514.
  70. David H. Bailey and Jonathan M. Borwein, Exploratory Experimentation and Computation, Notices of the AMS, 58 (No. 10, 2011), 1410-1419; http://www.ams.org/notices/201110/rtx111001410p.pdf.
  71. D. H. Bailey, J. M. Borwein, Experimental computation as an ontological game changer: The impact of modern mathematical computation tools on the ontology of mathematics, 2014; http://moodle.thecarma.net/jon/ontology.pdf
  72. David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, Elliptic integral evaluations of Bessel moments, arXiv:0801.0891. doi:10.1088/1751-8113/41/20/205203, J. Phys. A 41 (20) (2008) 205203. "This paper contains several proofs of identities that we first conjectured on the basis of numerical investigation, hugely facilitated by access to Sloane's wonderful sequence finder."
  73. David H. Bailey, Jonathan M. Borwein, Olga Caprotti, Ursula Martin, Bruno Salvy, Michela Taufer, Opportunities and Challenges in 21st Century Mathematical Computation: ICERM Workshop Report, 2014; http://www.carma.newcastle.edu.au/jon/ICERM-2014.pdf
  74. D. H. Bailey, J. M. Borwein, J. S. Kimberley, Discovery of large Poisson polynomials using the MPFUN-MPFR arbitrary precision software, Preprint 2015; http://www.davidhbailey.com/dhbpapers/poisson-res.pdf
  75. R. A. Bailey and P. J. Cameron, Latin squares: Equivalents and equivalence, Draft, May 2003.
  76. R. Baillie, Fun With Very Large Numbers, arXiv:1105.3943, 2011
  77. Robert Baillie, Wright's Fourth Prime, arXiv:1705.09741 [math.NT], 2017.
  78. R. Baillie, D. Borwein and J. M. Borwein, Surprising sync sums and integrals, Amer. Math. Monthly, 115 (2008), 888-901.
  79. Reginald Bain, A Musical Scale Generated from the Ratio of Consecutive Primes, Proceedings of Bridges 2015: Mathematics, Music, Art, Architecture, Culture, http://m.archive.bridgesmathart.org/2015/bridges2015-407.pdf
  80. W. D. Baird, Cops and robbers on graphs and hypergraphs, MS Thesis, Applied Mathematics, Ryerson University, 2011.
  81. W. D. Baird, A. Beveridge, A. Bonato, P. Codenotti, A. Maurer et al., On the minimum order of k-cop-win graphs, Ryerson Applied Mathematics Laboratory. Technical Report, Ryerson University, 2014; PDF.
  82. GN Bakare, SO Makanjuola, Some Results on Properties of Alternating Semigroups, Nigerian Journal of Mathematics and Applications Volume 24,(2015), 184−192; http://www.kwsman.com
  83. Jonathan Baker, KNV Meulen, A Van Tuyl, Shedding vertices of vertex decomposable graphs, arXiv preprint arXiv:1606.04447, 2016
  84. M. J. Bakhova, A NUMERICAL INVESTIGATION OF APÉRY-LIKE RECURSIONS AND RELATED PICARD-FUCHS EQUATIONS, Ph. D. Thesis, Math. Dept., Louisiana State University and Agricultural and Mechanical College, 2012; PDF.
  85. Valentin Bakoev, Algorithmic approach to counting certain types of m-ary partitions, Discrete Mathematics, Vol 275 (2004), pp. 17-41.
  86. Valentin P. Bakoev, The recurrence relations in teaching students of informatics, Inf. in Educ. 9 (2010) 159-170.
  87. Srivatsan Balakrishnan, Suresh Govindarajan and Naveen S. Prabhakar, On the asymptotics of higher-dimensional partitions, arXiv:1105.6231.
  88. B. Balamohan, A. Kuznetsov and Stephen Tanny, "On the Behavior of a Variant of Hofstadter's Q-Sequence", J. Integer Sequences, Volume 10, 2007, Article 07.7.1.
  89. B. Balamohan, Zhiqiang Li, Stephen Tanny, A Combinatorial Interpretation for Certain Relatives of the Conolly Sequence (2008); arXiv:0801.1097 and JIS 11 (2008) 08.2.1
  90. Peter Balazs, Generation and Empirical Investigation of hv-Convex Discrete Sets, in Image Analysis, Lecture Notes in Computer Science, Volume 4522/2007, Springer-Verlag.
  91. Peter Balazs, A benchmark set for the reconstruction of hv-convex discrete sets, Discrete Applied Mathematics 157 (16) 2009 3447-3456
  92. Lucilla Baldini, J Eschgfäller, Random functions from coupled dynamical systems, arXiv preprint arXiv:1609.01750, 2016
  93. Scott Balchin and Dan Rust, Computations for Symbolic Substitutions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.4.1.
  94. Cory B. H. Ball, The Apprentices' Tower of Hanoi, Electronic Theses and Dissertations, East Tennessee State University. Paper 2512, 2015. (A000325)
  95. Tyler Ball, Tom Edgar, and Daniel Juda, Dominance Orders, Generalized Binomial Coefficients, and Kummer’s Theorem, Mathematics Magazine, Vol. 87, No. 2, April 2014 , pp. 135-143; doi:10.4169/math.mag.87.2.135.
  96. Cristina Ballantine, Richard Bielak, Combinatorial proofs of two Euler type identities due to Andrews, arXiv:1803.06394 [math.CO], 2018. (A090867, A265251)
  97. Cristina Ballantine, Mircea Merca, Bisected theta series, least r-gaps in partitions, and polygonal numbers, arXiv:1710.05960 [math.CO], 2017. (A022567, A064174, A064428)
  98. C Ballantine, M Merca, Padovan numbers as sums over partitions into odd parts, Journal of Inequalities and Applications, (2016) 2016:1. doi:10.1186/s13660-015-0952-5
  99. Cristina Ballantine, Mircea Merca, New convolutions for the number of divisors Journal of Number Theory, 2016, vol. 170, pp. 17-34; doi:10.1016/j.jnt.2016.06.007
  100. Cristina Ballantine, M Merca, Parity of sums of partition numbers and squares in arithmetic progressions, The Ramanujan Journal, 2016 doi:10.1007/s11139-016-9845-6
  101. Christian Ballot, On Functions Expressible as Words on a Pair of Beatty Sequences, Journal of Integer Sequences, Vol. 20 (2017), Article 17.4.2.
  102. Christian Ballot, Divisibility of the middle Lucasnomial coefficient, Fib. Q., 55 (2017, 297-308.
  103. Balof, Barry, Restricted tilings and bijections. J. Integer Seq. 15 (2012), no. 2, Article 12.2.3, 17 pp.
  104. Barry Balof and Jacob Menashe, "Semiorders and Riordan Numbers", J. Integer Sequences, Volume 10, 2007, Article 07.7.6.
  105. B. Balof, H. Jenne, Tilings, Continued Fractions, Derangements, Scramblings, and e, - Journal of Integer Sequences, 17 (2014), #14.2.7.
  106. Ferenc Balogh, A generalization of Gessel's generating function to enumerate words with double or triple occurrences in each letter and without increasing subsequences of a given length, preprint arXiv:1505.01389, 2015.
  107. N. A. Balonin and Jennifer Seberry, A review and new symmetric conference matrices, http://ro.uow.edu.au/cgi/viewcontent.cgi?article=3757&context=eispapers, 2014.
  108. N. A. Balonin, J. Seberry, Vizualizing Hadamard Matrices: the Propus Construction, 2014; http://mathscinet.ru/files/bsPropus.pdf
  109. V. Baltic, On the number of certain types of strongly restricted permutations, Appl. An. Disc.Math. 4 (2010), 119-135
  110. V. Baltic, Applications of the finite state automata for counting restricted permutations and variations, Yugoslav Journal of Operations Research, 22 (2012), Number 2, 183-198 ; doi:10.2298/YJOR120211023B; http://yujor.fon.bg.ac.rs/index.php/journal/article/viewFile/1022/512.
  111. Giorgio Balzarotti and Paolo P. Lava, Le sequenze di numeri interi, Divagazioni matematiche tra curiosità, tradizione e invenzioni, Hoepli, 2008. Link to book: http://libreriarizzoli.corriere.it/libro/balzarotti_giorgio_lava_paolo_p-le_sequenze_di_numeri_interi.aspx?ean=9788820341107
  112. Giorgio Balzarotti and Paolo P. Lava, Gli errori nelle dimostrazioni matematiche - Imparare la matematica e la logica dagli errori (degli altri), Hoepli - Milan, 2009. Link: http://www.hoepli.it/libro/gli-errori-nelle-dimostrazioni-matematiche/9788820343361.asp
  113. Giorgio Balzarotti and Paolo P. Lava, 103 curiosità matematiche - Teoria dei numeri, delle cifre e delle relazioni nella matematica contemporanea, Hoepli - Milan, 2010. Link: http://www.hoepli.it/libro/103-curiosita--matematiche/9788820345563.asp
  114. Giorgio Balzarotti and Paolo P. Lava, La Derivata Aritmetica – Alla scoperta di un nuovo approccio alla teoria dei numeri, Hoepli - Milan, 2013. Link: http://www.hoepli.it/libro/la-derivata-aritmetica-/9788820358648.html
  115. Alex Samuel Bamunoba, A note on Carlitz Wieferich primes, Journal of Number Theory 174 (2017) 343–357; doi:10.1016/j.jnt.2016.09.036
  116. Jung-Chao Ban, CH Chang, Tree-Shifts: The entropy of tree-shifts of finite type, arXiv preprint arXiv:1509.08325, 2015
  117. J.-C. Ban, W.-G. Hu and S,-S, Lin, Pattern generation problems arising in multiplicative integer systems, Arxiv preprint arXiv:1207.7154, 2012
  118. Esther M. Banaian, Generalized Eulerian Numbers and Multiplex Juggling Sequences, (2016). All College Thesis Program. Paper 24; http://digitalcommons.csbsju.edu/honors_thesis/24
  119. E. Banaian, S. Butler, C. Cox, J. Davis, J. Landgraf, S. Ponce, A generalization of Eulerian numbers via rook placements, arXiv preprint arXiv:1508.03673, 2015
  120. Bandaru, Sunith; Deb, Kalyanmoy, Higher and lower-level knowledge discovery from Pareto-optimal sets. J. Global Optim. 57 (2013), no. 2, 281-298.
  121. C. Banderier, Classifying ECO-Systems and Random Walks, Algorithms Project, INRIA Rocquencourt, September 27, 1999.
  122. Cyril Banderier, Jean-Luc Baril and Céline Moreira dos Santos, Right-jumps and pattern avoiding permutations, https://lipn.univ-paris13.fr/~banderier/Papers/rightjump.pdf, 2015.
  123. C. Banderier, M. Bousquet-Mélou, A. Denise, P. Flajolet, D. Gardy and D. Gouyou-Beauchamps, Generating Functions for Generating Trees, Discrete Mathematics 246(1-3), March 2002, pp. 29-55.
  124. C. Banderier, J.-M. Fédou, C. Garcia and D. Merlini, Algebraic succession rules and Lattice paths with an infinite set of jumps, Preprint (2003).
  125. C. Banderier and P. Flajolet, Basic Analytic Combinatorics of Directed Lattice Paths, Theoretical Computer Science Vol. 281. Issue 1-2, pp. 37-80, Jun. 2002, (special volume dedicated to M. Nivat).
  126. Cyril Banderier, Philippe Flajolet, Daniele Gardy et al., Generating functions for generating trees (2004), arXiv:math/0411250.
  127. C. Banderier, P. Hitczenko, Enumeration and asymptotics of restricted compositions having the same number of parts, Disc. Appl. Math. 160 (2012) 2542-2554 doi:10.1016/j.dam.2011.12.011
  128. C. Banderier, H.-K. Hwang, V. Ravelomanana and V. Zacharovas, Analysis of an exhaustive search algorithm in random graphs and the n^{c logn}-asymptotics, http://140.109.74.92/hk/wp-content/files/2012/07/mis-n-to-the-logn.pdf, 2012.
  129. C. Banderier, C. Krattenthaler, A. Krinik et al., Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv:1609.06473 (2017).
  130. C. Banderier and S. Schwer, Why Delannoy numbers?, 5th International Conference on Lattice Path Combinatorics and Discrete Distributions, 2002. Journal of Statistical Planning and Inference, Volume 135, Issue 1, 1 November 2005, Pages 40-54.
  131. Cyril Banderier, Michael Wallner, Lattice paths with catastrophes, arXiv:1707.01931 [math.CO], 2017.
  132. Cyril Banderier, Philippe Marchal, Michael Wallner, Periodic Pólya urns and an application to Young tableaux, Leibniz International Proceedings in Informatics (LIPIcs), 29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018), 1-12. arXiv:1806.03133 [cs.DM], 2018. (A293653)
  133. Cyril Banderier, Philippe Marchal, Michael Wallner, Rectangular Young tableaux with local decreases and the density method for uniform random generation, arXiv:1805.09017 [cs.DM], 2018. (A001147, A025035-A025042)
  134. Ruggero Bandiera and Florian Schaetz, Eulerian idempotent, pre-Lie logarithm and combinatorics of trees, arXiv:1702.08907 [math.CO], 2017.
  135. Abdul Karim Bangura, Promoting Sustainability and Predicting Tipping Points in Africa: Suggestion for a Collaborative Initiative via E-Clustering, in CODESRIA, June 8-12, 2015, Dakar, Senegal.
  136. Teo Banica, Algebraic invariants of truncated Fourier matrices, arXiv preprint arXiv:1401.5023, 2014
  137. T. Banica, The algebraic structure of quantum partial isometries, arXiv preprint arXiv:1411.0577, 2014
  138. T. Banica, A. Skalski, The quantum algebra of partial Hadamard matrices, arXiv preprint arXiv:1310.3855, 2013
  139. Banjo, Elizabeth (2013). Representation theory of algebras related to the partition algebra. (Unpublished Doctoral thesis, City University London); http://openaccess.city.ac.uk/2360/1/Banjo,_Elizabeth.pdf
  140. R. B. Banks, Slicing Pizzas, Racing Turtles, and Further Adventues in Applied Mathematics, Princeton Univ. Press, 1999.
  141. William D. Banks and Florian Luca, "Concatenations with Binary Recurrent Sequences", J. Integer Sequences, Volume 8, 2005, Article 05.1.3.
  142. M. J. Bannister, Z. Cheng, W. E. Devanny and D. Eppstein, Superpatterns and universal point sets, arXiv preprint arXiv:1308.0403, 2013
  143. Bansal, Nikhil; Han, Xin; Iwama, Kazuo; Sviridenko, Maxim; Zhang, Guochuan A harmonic algorithm for the 3D strip packing problem. SIAM J. Comput. 42 (2013), no. 2, 579-592.
  144. GM Barabash, YM Kholyavka, IV Tytar, Periodic words connected with the Fibonacci words, Carpathian Math. Publ. 2016, 8 (1), 11–15; doi:10.15330/cmp.8.1.11-15
  145. A. I. Barbero, O. Ytrehus, Information exchange for routing protocols, 2014; http://ita.ucsd.edu/workshop/14/files/paper/paper_310.pdf
  146. J. Fernando Barbero G., Jesús Salas, Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure, arXiv:1307.2010, 2013
  147. J. F. Barbero G., J. Salas and E. J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. II. Applications, arXiv preprint arXiv:1307.5624, 2013
  148. J. Fernando Barbero G., Jesús Salas, Eduardo J. S. Villaseñor, Generalized Stirling permutations and forests: Higher-order Eulerian and Ward numbers, Electronic Journal of Combinatorics 22(3) (2015), #P3.37.
  149. S. Barbero, Dickson Polynomials, Chebyshev Polynomials, and Some Conjectures of Jeffery, Journal of Integer Sequences, 17 (2014), #14.3.8.
  150. S. Barbero, U. Cerruti, N. Murru, Transforming Recurrent Sequences by Using the Binomial and Invert Operators, J. Int. Seq. 13 (2010) # 10.7.7.
  151. S. Barbero, U. Cerruti, N. Murru, A Generalization of the Binomial Interpolated Operator and its Action on Linear Recurrent Sequences, J. Int. Seq. 13 (2010) # 10.9.7
  152. Stefano Barbero, Umberto Cerruti, Nadir Murru, Some combinatorial properties of the Hurwitz series ring, arXiv:1710.05665 [math.NT], 2017
  153. Barbero, Stefano, Umberto Cerruti, and Nadir Murru. "On the operations of sequences in rings and binomial type sequences." Ricerche di Matematica (2018): 1-17. (A000142)
  154. S. Barbero, U. Cerruti, N. Murru, M. Abrate, Identities Involving Zeros of Ramanujan and Shanks Cubic Polynomials, Journal of Integer Sequences, 16 (2013), #13.8.1.
  155. H. Barcelo and R. Laubenbacher, Perspectives on A-homotopy theory and its applications, Discr. Math., 298 (2005), 39-61.
  156. Barcelo, Hélène; Sagan, Bruce E.; and Sundaram, Sheila, Counting permutations by congruence class of major index. Adv. in Appl. Math. 39 (2007), no. 2, 269-281.
  157. J. A. Barcelo, A. Carbery, On the magnitudes of compact sets in Euclidean spaces, arXiv preprint arXiv:1507.02502, 2015
  158. E. Barcucci, L. Belanger and S. Brlek, On Tribonacci Sequences, Fibonacci Quarterly, 2004 PDF].
  159. E. Barcucci, A. Bernini, S. Bilotta, R. Pinzani, Cross-bifix-free sets in two dimensions, arXiv preprint arXiv:1502.05275, 2015
  160. Barcucci, Elena; Bernini, Antonio; Ferrari, Luca; Poneti, Maddalena, A distributive lattice structure connecting Dyck paths, noncrossing partitions and 312-avoiding permutations. Order 22 (2005), no. 4, 311-328 (2006).
  161. E. Barcucci, A. Bernini, M. Poneti, From Fibonacci to Catalan permutations (2006), arXiv:math/0612277.
  162. E. Barcucci, S. Brunetti, F. Del Ristoro, Succession rules and Deco polyominoes, RAIRO - Theor. Inf. Appl. 34 (1) (2000) 1-14
  163. E. Barcucci, A. Del Lungo, A. Frosini and S. Rinaldi, A technology for reverse-engineering a combinatorial problem from a rational generating function. Adv. in Appl. Math. 26 (2001), no. 2, 129-153.
  164. E. Barcucci, A. Del Lungo, E. Pergola and R. Pinzani, From Motzkin to Catalan permutations, Discrete Mathematics, 217 (2000), 33-49.
  165. Elena Barcucci, Alberto Del Lungo, Renzo Pinzani, Deco polyominoes, permutations and random generation, Theoretical Computer Science, Volume 159, Issue 1, 28 May 1996, Pages 29-42.
  166. E. Barcucci, A Frosini and S. Rinaldi, Directed-convex polyominoes: ECO method and bijective results, Proc SFCA/FPSAC'02 July 2002
  167. E. Barcucci, A. Frosini and S. Rinaldi, On directed-convex polyominoes in a rectangle, Discr. Math., 298 (2005). 62-78.
  168. E. Barcucci, E. Pergola, R. Pinzani and S. Rinaldi, ECO method and hill-free generalized Motzkin paths, Seminaire Lotharingien de Combinatoire, B46b (2001), 14 pp.
  169. E. Barcucci, E. Pergola, R. Pinzani and S. Rinaldi, A bijection for some paths on the slit plane. Adv. in Appl. Math. 26 (2001), no. 2, 89-96.
  170. Barcucci, E.; Rinaldi, S., Some linear recurrences and their combinatorial interpretation by means of regular languages. Theoret. Comput. Sci. 255 (2001), no. 1-2, 679-686.
  171. R. Barden, N. Bushaw, C. Callison, A. Fernandez, B. Harris, I. Holden, C. E. Larson, D. Muncy, C. O'Shea, J. Shive, J. Raines, P. Rana, N. van Cleemput, B. Ward, N. Wilcox-Cook, The Graph Brain Project & Big Mathematics, research paper, 2017. PDF (A265032) The authors are grateful for useful comments from S. Cox, R. Meagher, M. Ong Ante, J. Padden, R. Segal, N. Sloane that have greatly improved our presentation.
  172. G Barequet, R Barequet, An Improved Upper Bound on the Growth Constant of Polyominoes, Electronic Notes in Discrete Math., 2015.
  173. Gill Barequet, Solomon W. Golomb, and David A. Klarner, Polyominoes. (This is a revision, by G. Barequet, of the chapter of the same title originally written by the late D. A. Klarner for the first edition, and revised by the late S. W. Golomb for the second edition.) Preprint, 2016, http://www.csun.edu/~ctoth/Handbook/chap14.pdf
  174. G. Barequet, M. Shalah, Automatic Proofs for Formulae Enumerating Proper Polycubes, 31st International Symposium on Computational Geometry (SoCG’15). Editors: Lars Arge and János Pach; pp. 19–22, 2015.
  175. Gill Barequet, M Shalah, Improved Bounds on the Growth Constant of Polyiamonds,, 32nd European Workshop on Computational Geometry, 2016; http://www.eurocg2016.usi.ch/sites/default/files/paper_19.pdf
  176. Gill Barequet, Mira Shalah, Counting n-cell polycubes proper in n - k dimensions, European Journal of Combinatorics, Volume 63, June 2017, p. 146-163. doi:10.1016/j.ejc.2017.03.006
  177. Gill Barequet, Mira Shalah, Yufei Zheng, An Improved Lower Bound on the Growth Constant of Polyiamonds, In: Cao Y., Chen J. (eds) Computing and Combinatorics, COCOON 2017, Lecture Notes in Computer Science, vol 10392. doi:10.1007/978-3-319-62389-4_5
  178. Barequet, Ronnie; Barequet, Gill; Rote, Gunter; Formulae and growth rates of high-dimensional polycubes. Combinatorica 30 (2010), no. 3, 257-275.
  179. Till Bargheer, Systematics of the Multi-Regge Three-Loop Symbol, arXiv:1606.07640 [hep-th]
  180. J.-L. Baril, Classical sequences revisited with permutations avoiding dotted pattern, Electronic Journal of Combinatorics, 18 (2011), #P178; http://www.combinatorics.org/Volume_18/PDF/v18i1p178.pdf.
  181. JL Baril, Avoiding patterns in irreducible permutations, Discrete Mathematics and Theoretical Computer Science, submitted 2014.
  182. JL Baril, R Genestier, A Giorgetti, A Petrossian, Rooted planar maps modulo some patternss, Preprint 2016; http://jl.baril.u-bourgogne.fr/cartes.pdf
  183. JL Baril, S Kirgizov, The pure descent statistic on permutations, Preprint, 2016, http://jl.baril.u-bourgogne.fr/Stirling.pdf
  184. Jean-Luc Baril, Sergey Kirgizov, Armen Petrossian, Dyck paths with a first return decomposition constrained by height, Submitted, 2017
  185. Jean-Luc Baril, Sergey Kirgizov, Armen Petrossian, Forests and pattern-avoiding permutations modulo pure descents, 2017.
  186. Baril, Jean-Luc, Sergey Kirgizov, and Vincent Vajnovszki. "Patterns in treeshelves." Discrete Mathematics 340.12 (2017): 2946-2954; arXiv 1611.07793.
  187. Jean-Luc Baril, Sergey Kirgizov, Vincent Vajnovszki, Descent distribution on Catalan words avoiding a pattern of length at most three, arXiv:1803.06706 [math.CO], 2018. (A000108, A000124, A000217, A001519, A001787, A001793, A001870, A005183, A007051, A011782, A027471, A057960)
  188. Jean-Luc Baril, Sergey Kirgizov, Armen Petrossian, Enumeration of Łukasiewicz paths modulo some patterns, arXiv:1804.01293 [math.CO], 2018. (A000045, A000325, A001006, A001405, A004148, A005251, A011782, A023431, A165407, A191385, A292460, A302483)
  189. J.-L. Baril, T. Mansour, A. Petrossian, Equivalence classes of permutations modulo excedances, 2014; http://jl.baril.u-bourgogne.fr/equival.pdf
  190. Baril, J.-L. and Pallo, J. M., The phagocyte lattice of Dyck words. Order 23 (2006), no. 2-3, 97-107.
  191. J.-L. Baril and J.M. Pallo, The pruning-grafting lattice of binary trees, Theoretical Computer Science, Volume 409, Issue 3, 28 December 2008, Pages 382-393.
  192. J.-L. Baril, J.-M. Pallo, Motzkin subposet and Motzkin geodesics in Tamari lattices, 2013; PDF
  193. Baril, Jean-Luc, and Jean-Marcel Pallo. "A Motzkin filter in the Tamari lattice." Discrete Mathematics 338.8 (2015): 1370-1378.
  194. J.-L. Baril, A. Petrossian, Equivalence classes of Dyck paths modulo some statistics, 2014; PDF. Baril, Jean-Luc; Petrossian, Armen. Equivalence classes of Dyck paths modulo some statistics. Discrete Math. 338 (2015), no. 4, 655--660. MR3300754
  195. Jean-Luc Baril and Armen Petrossian, Equivalence classes of permutations modulo descents and left-to-right maxima, preprint. (A001006, A000108, A000124, A000110)
  196. J.-L. Baril, A. Petrossian, Equivalence Classes of Motzkin Paths Modulo a Pattern of Length at Most Two, J. Int. Seq. 18 (2015) 15.7.1
  197. J.-L. Baril, R. Vernay, Whole mirror duplication-random loss model and pattern avoiding permutations, Inf. Proc. Lett 110 (2010) 474-480 doi:10.1016/j.ipl.2010.04.016
  198. M. Barnabei, F. Bonetti, S. Elizalde, M. Silimbani, Descent sets on 321-avoiding involutions and hook decompositions of partitions, arXiv preprint arXiv:1401.3011, 2014
  199. Marilena Barnabei, Flavio Bonetti, Matteo Silimbani, Bijections and recurrences for integer partitions into a bounded number of parts, Applied Mathematics Letters, Volume 22, Issue 3, March 2009, Pages 297-303.
  200. M. Barnabei, F. Bonetti, and M. Silimbani, Restricted involutions and Motzkin paths (2008) arXiv:0812.0463 Adv. in Appl. Math. 47 (2011), no. 1, 102-115.
  201. M. Barnabei, F. Bonetti, and M. Silimbani, The distribution of consecutive patterns of length 3 in 3\textrm{-}1\textrm{-}2 -avoiding permutations (2009) arXiv:0904.0079 and Eur. J. Comb 31 (5) (2010) 1360-1371 doi:10.1016/j.ejc.2009.11.011
  202. M. Barnabei, F.Bonetti, and M. Silimbani, Combinatorial properties of the numbers of tableaux of bounded height (2008); arXiv:0803.2112
  203. Barnabei, Marilena; Bonetti, Flavio; and Silimbani, Matteo; The descent statistic on 123-avoiding permutations. Sem. Lothar. Combin. 63 (2010), Art. B63a, 8 pp.
  204. M. Barnabei, F. Bonetti and M. Silimbani, Two permutation classes related to the Bubble Sort operator, Electronic Journal of Combinatorics 19(3) (2012), #P25.
  205. M. Barnabei, F. Bonetti and M. Silimbani, Two permutation classes enumerated by the central binomial coefficients, arXiv preprint arXiv:1301.1790, 2013 and <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Silimbani/silimbani3.html">J. Int. Seq. 16 (2013) #13.3.8</a>
  206. Joel Barnes, Conformal welding of uniform random trees, Ph. D. Dissertation, Univ. Washington, 2014; https://dlib.lib.washington.edu/researchworks/bitstream/handle/1773/26116/Barnes_washington_0250E_13633.pdf?sequence=1&isAllowed=y
  207. M. P. Barnett, Some applications of high precision arithmetic
  208. Brandy Amanda Barnette, Counting Convex Sets on Products of Totally Ordered Sets, Masters Theses & Specialist Projects, Paper 1484, 2015 (A002415, A000332, A006542, A006857, A108679)
  209. D Barrera, MJ Ibáñez, S Remogna, On the construction of trivariate near-best quasi-interpolants based on C^2 quartic splines on type-6 tetrahedral partitions, Journal of Computational and Applied, 2016, Volume 311, February 2017, Pages 252-261.
  210. Christian Barrientos, Sarah Minion, Enumerating Families of Labeled Graphs, Journal of Integer Sequences, 18 (2015), # 15.1.7.
  211. Christian Barrientos, Sarah Minion, On the Graceful Cartesian Product of Alpha-Trees, Theory and Applications of Graphs, Vol. 4: Iss. 1, Article 3, 2017. doi:10.20429/tag.2017.040103
  212. Christian Barrientos, Sarah Minion, On the number of α-labeled graphs, Discussiones Mathematicae Graph Theory, to appear, doi:10.7151/dmgt.1985
  213. Michael D. Barrus, Weakly threshold graphs, arXiv preprint arXiv:1608.01358, 2016
  214. M. D. Barrus, S. G. Hartke, Minimal forbidden sets for degree sequence characterizations, 2013; PDF
  215. Paul Barry, "A Catalan Transform and Related Transformations on Integer Sequences", J. Integer Sequences, Volume 8, 2005, Article 05.4.5.
  216. Paul Barry, "On Integer-Sequence-Based Constructions of Generalized Pascal Triangles", J. Integer Sequences, Volume 9, 2006, Article 06.2.4.
  217. Paul Barry, "On a Family of Generalized Pascal Triangles Defined by Exponential Riordan Arrays", J. Integer Sequences, Volume 10, 2007, Article 07.3.5.
  218. Paul Barry, "Some Observations on the Lah and Laguerre Transforms of Integer Sequences", J. Integer Sequences, Volume 10, 2007, Article 07.4.6.
  219. Paul Barry, On Integer Sequences Associated With the Cyclic and Complete Graphs, J. Integer Sequences, Volume 10, 2007, Article 07.4.8.
  220. Paul Barry, A Note on Krawtchouk Polynomials and Riordan Arrays, JIS 11 (2008) 08.2.2
  221. Paul Barry, A Study of Integer Sequences, Riordan Arrays, Pascal-like Arrays and Hankel Transforms, Ph D Thesis, University College, Cork, Republic of Ireland (2009).
  222. P. Barry, A Note on a One-Parameter Family of Catalan-Like Numbers, JIS 12 (2009) 09.5.4
  223. P. Barry, Continued fractions and transformations of integer sequences, JIS 12 (2009) 09.7.6
  224. P. Barry, Symmetric Third-Order Recurring Sequences, Chebyshev Polynomials, and Riordan Arrays, JIS 12 (2009) 09.8.6
  225. P. Barry, Generalized Catalan Numbers, Hankel Transforms and Somos-4 Sequences, J. Int. Seq. 13 (2010) #10.7.2.
  226. P. Barry, The Restricted Toda Chain, Exponential Riordan Arrays, and Hankel Transforms, J. Int. Seq. 13 (2010) # 10.8.4
  227. P. Barry, Exponential Riordan Arrays and Permutation Enumeration, J. Int. Seq. 13 (2010) # 10.9.1
  228. Barry, Paul, Riordan arrays, orthogonal polynomials as moments, and Hankel transforms. J. Integer Seq. 14 (2011), no. 2, Article 11.2.2, 37 pp.
  229. Barry, Paul, On the central coefficients of Bell matrices. J. Integer Seq. 14 (2011), no. 4, Article 11.4.3, 10 pp.
  230. Barry, Paul, On a generalization of the Narayana triangle. J. Integer Seq. 14 (2011), no. 4, Article 11.4.5, 22 pp.
  231. Paul Barry, Eulerian polynomials as moments, via exponential Riordan arrays, Arxiv preprint arXiv:1105.3043, 2011, and JIS 14 (2011) # 11.9.5
  232. Paul Barry, Combinatorial polynomials as moments, Hankel transforms and exponential Riordan arrays, Arxiv preprint arXiv:1105.3044, 2011, also J. Int. Seq. 14 (2011) 11.6.7.
  233. P. Barry, Invariant number triangles, eigentriangles and Somos-4 sequences, Arxiv preprint arXiv:1107.5490, 2011.
  234. P. Barry, On sequences with {-1, 0, 1} Hankel transforms, Arxiv preprint arXiv:1205.2565, 2012
  235. P. Barry, A Note on Three Families of Orthogonal Polynomials defined by Circular Functions, and Their Moment Sequences, Journal of Integer Sequences, Vol. 15 (2012), #12.7.2.
  236. P. Barry, Riordan-Bernstein Polynomials, Hankel Transforms and Somos Sequences, Journal of Integer Sequences, Vol. 15 2012, #12.8.2.
  237. Paul Barry, On the Hurwitz Transform of Sequences, Journal of Integer Sequences, Vol. 15 (2012), #12.8.7.
  238. P. Barry, On the Hankel transform of C-fractions, arXiv preprint arXiv:1212.3490, 2012
  239. P. Barry, On the Central Coefficients of Riordan Matrices, Journal of Integer Sequences, 16 (2013), #13.5.1.
  240. P. Barry, A Note on a Family of Generalized Pascal Matrices Defined by Riordan Arrays, Journal of Integer Sequences, 16 (2013), #13.5.4.
  241. P. Barry, On the Inverses of a Family of Pascal-Like Matrices Defined by Riordan Arrays, Journal of Integer Sequences, 16 (2013), #13.5.6.
  242. P. Barry, On the Connection Coefficients of the Chebyshev-Boubaker polynomials, The Scientific World Journal, Volume 2013 (2013), Article ID 657806, 10 pages; doi:10.1155/2013/657806.
  243. Paul Barry, Laurent Biorthogonal Polynomials and Riordan Arrays, arXiv preprint arXiv:1311.2292, 2013
  244. P. Barry, General Eulerian Polynomials as Moments Using Exponential Riordan Arrays, Journal of Integer Sequences, 16 (2013), #13.9.6.
  245. P. Barry, Embedding structures associated with Riordan arrays and moment matrices, arXiv preprint arXiv:1312.0583, 2013
  246. P. Barry, Comparing two matrices of generalized moments defined by continued fraction expansions, arXiv preprint arXiv:1311.7161, 2013 and J. Int. Seq. 17 (2014) # 14.5.1
  247. P. Barry, Generalized Stirling Numbers, Exponential Riordan Arrays, and Toda Chain Equations, Journal of Integer Sequences, 17 (2014), #14.2.3.
  248. P. Barry, Constructing Exponential Riordan Arrays from Their A and Z Sequences, Journal of Integer Sequences, 17 (2014), #14.2.6.
  249. P Barry, Riordan arrays, generalized Narayana triangles, and series reversion, Linear Algebra and its Applications, 491 (2016) 343–385.
  250. Paul Barry, Riordan Arrays: A Primer, Logic Press, 2016.
  251. Paul Barry, Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices, - Journal of Integer Sequences, 19, 2016, #16.3.5.
  252. Paul Barry, On the Group of Almost-Riordan Arrays, arXiv preprint arXiv:1606.05077, 2016
  253. Paul Barry, Eulerian-Dowling Polynomials as Moments, Using Riordan Arrays, arXiv:1702.04007 [math.CO], 2017.
  254. Paul Barry, A Note on d-Hankel Transforms, Continued Fractions, and Riordan Arrays, arXiv:1702.04011 [math.CO], 2017.
  255. Paul Barry, Sigmoid functions and exponential Riordan arrays, arXiv:1702.04778 [math.CA], 2017.
  256. Paul Barry, Power series, the Riordan group and Hopf algebras, arXiv:1706.01323 [math.CO], 2017.
  257. Paul Barry, On a transformation of Riordan moment sequences, arXiv:1802.03443 [math.CO], 2018. (A000108, A000142, A000629, A000670, A001003, A001006, A001586, A005043, A006318, A008292, A064641, A021009, A049774, A049774, A052186, A052709, A060187, A090181, A097899, A097899, A111961, A123125, A129775, A131198, A173018)
  258. Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018. (A000045, A000108, A000670, A000957, A001263, A001519, A002105, A003688, A004123, A008292, A019538, A028246, A032033, A033282, A038754, A046802, A048993, A052948, A060693, A074059, A075497, A078008, A086810, A090181, A090582, A094416, A094417, A094418, A094503, A096078, A100754, A123125, A126216, A130850, A131198, A133494, A151575, A173018, A176230, A211402, A211608, A248727, A271697) "This note makes reference to many sequences to be found in the OEIS, which at the time of writing contains more than 300,000 sequences. All who work in the area of integer sequences are profoundly indebted to Neil Sloane. Many of the sequences in this note are related to simplicial objects such as the associahedron and the permutahedron. Indeed, the T-transform provides an enumerative link between these two objects, while the P pipeline brings these two objects back to more basic objects. The comments of Tom Copeland and Peter Bala in the relevant OEIS entries have been very useful in this context."
  259. Paul Barry, Generalized Eulerian Triangles and Some Special Production Matrices, arXiv:1803.10297 [math.CO], 2018. (A000108, A000165, A000670, A008292, A060187, A108524, A114608, A118376, A123125, A151374, A173018)
  260. Paul Barry, The Gamma-Vectors of Pascal-like Triangles Defined by Riordan Arrays, arXiv:1804.05027 [math.CO], 2018. (A000108, A000898, A001263, A001591, A007318, A008288, A008292, A055151, A059344, A077938, A100861, A100862, A101280, A271875)
  261. Paul Barry, A note on number triangles that are almost their own production matrix, arXiv:1804.06801 [math.CO], 2018. (A001339, A003319, A081923, A094587, A104980, A111184, A111529, A111530, A111531, A111536, A111544, A111553, A132159)
  262. Paul Barry, On the f-Matrices of Pascal-like Triangles Defined by Riordan Arrays. arXiv:1805.02274 [math.CO], 2018. (A001147, A001263, A007318, A019538, A033282, A038207, A055151, A074909, A101280, A135278)
  263. Paul Barry and Patrick Fitzpatrick, "On a One-Parameter Family of Riordan Arrays and the Weight Distribution of MDS Codes", J. Integer Sequences, Volume 10, 2007, Article 07.9.8.
  264. P. Barry, A. Hennessey, Notes on a Family of Riordan Arrays and Associated Integer Hankel Transforms, JIS 12 (2009) 09.5.3
  265. P. Barry, A. Hennessy, The Euler-Seidel Matrix, Hankel Matrices and Moment Sequences, J. Int. Seq. 13 (2010) # 10.8.2
  266. P. Barry, A. Hennessy, Meixner-Type Results for Riordan Arrays and Associated Integer Sequences, J. Int. Seq. 13 (2010) # 10.9.4
  267. P. Barry and A. Hennessy, Four-term Recurrences, Orthogonal Polynomials and Riordan Arrays, Journal of Integer Sequences, 2012, article 12.4.2.
  268. Barry, Paul; Hennessy, Aoife A note on Narayana triangles and related polynomials, Riordan arrays, and MIMO capacity calculations. J. Integer Seq. 14 (2011), no. 3, Article 11.3.8, 26 pp.
  269. Barry, Paul; Hennessy, Aoife Four-term recurrences, orthogonal polynomials and Riordan arrays. J. Integer Seq. 15 (2012), no. 4, Article 12.4.2, 19 pp.
  270. Paul Barry and Aoife Hennessy, Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths, Journal of Integer Sequences, Vol. 15, 2012, #12.4.8.
  271. Paul Barry, Arnauld Mesinga Mwafise, Classical and Semi-Classical Orthogonal Polynomials Defined by Riordan Arrays, and Their Moment Sequences, Journal of Integer Sequences, Vol. 21 (2018), Article 18.1.5. HTML (A000045, A000108, A000984, A001045, A001147, A049027, A059304, A081696, A098614, A200375)
  272. D. Barsky, J.-P. Bézivin, p-adic Properties of Lengyel's Numbers, Journal of Integer Sequences, 17 (2014), #14.7.3.
  273. Johann Bartel, R. K. Bhaduri, Matthias Brack, M. V. N. Murthy, On the asymptotic prime partitions of integers, arXiv:1609.06497, 2017.
  274. Andreas Bärtschi, B Geissmann, D Graf, T Hruz, P Penna, et al., On computing the total displacement number via weighted Motzkin paths, - arXiv preprint arXiv:1606.05538, 2016
  275. Andreas Bärtschi, Daniel Graf, Paolo Penna, Truthful Mechanisms for Delivery with Mobile Agents, arXiv:1702.07665 [cs.GT], 2017.
  276. Nayandeep Deka Baruah and Kanan Kumari Ojah, Partitions with designated summands in which all parts are odd, INTEGERS 15 (2015), #A9.
  277. Thomas Baruchel, C Elsner, On error sums formed by rational approximations with split denominators, arXiv preprint arXiv:1602.06445, 2016
  278. Yuliy Baryshnikov, Stephen Melczer, Robin Pemantle, Armin Straub, Diagonal asymptotics for symmetric rational functions via ACSV, LIPIcs Proceedings of Analysis of Algorithms 2018. arXiv:1804.10929 [math.CO]. (A125143)
  279. Uwe Bäsel, The mean width of the oloid and integral geometric applications of it, arXiv preprint arXiv:1604.07245, 2016
  280. Bojan Basic, The existence of n-flimsy numbers in a given base, The Ramanujan Journal, March 7, 2016, pages 1-11. doi:10.1007/s11139-015-9768-7.
  281. Kim Baskerville, Peter Grassberger and Maya Paczuski, Graph animals, subgraph sampling and motif search in large networks (2007), arXiv:q-bio.MN/0702029.
  282. Kim Baskerville, Peter Grassberger and Maya Paczuski, Graph animals, subgraph sampling and motif search in large networks (2007), arXiv:q-bio/0702029.
  283. Henning Basold, Helle Hvid Hansen, Jean-Éric Pin, Jan Rutten, Newton Series, Coinductively: A Comparative Study of Composition, Mathematical Structures in Computer Science, 2017. doi:10.1017/S0960129517000159 preprint: http://www.cs.ru.nl/~hbasold/publications/NewtonCoind-MSCS.pdf
  284. Nicolas Basset, Counting and generating permutations using timed languages, 2013; http://hal-upec-upem.archives-ouvertes.fr/docs/00/86/89/18/PDF/autreversionlongue.pdf
  285. Nicolas Basset, Counting and generating permutations in regular classes of permutations, HAL Id: hal-01093994, https://hal.archives-ouvertes.fr/hal-01093994, 2014. Also Counting and generating permutations in regular classes, Algorithmica, December 2016, Volume 76, Issue 4, pp 989–1034.
  286. M. E. Bassett, S. Majid, Finite noncommutative geometries related to F_p[x], arXiv preprint arXiv:1603.00426, 2016
  287. Bassetti, Federico; Diaconis, Persi, Examples comparing importance sampling and the Metropolis algorithm. Illinois J. Math. 50 (2006), no. 1-4, 67-91 .
  288. F. Bassino, Cyril Nicaud, Pascal Weil, Random generation of finitely generated subgroups of a free group (2007), arXiv:0707.3185.
  289. Benjamin Basso and Lance J. Dixon, Gluing Ladders into Fishnets, arXiv:1705.03545 [hep-th], 2017.
  290. Bastida, Julio R. Quadratic properties of a linearly recurrent sequence. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 163--166, Congress. Numer., XXIII–XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561042 (81e:10009)
  291. Jerome Bastien, Construction and enumeration of circuits capable of guiding a miniature vehicle, arXiv preprint arXiv:1603.08775, 2016
  292. M. T. Batchelor, J. de Gier and B. Nienhuis, The quantum symmetric XXZ chain at Delta=-1/2, alternating sign matrices and plane partitions, arXiv:cond-mat/0101385
  293. R. G. Batchko, A prime fractal and global quasi-self-similar structure in the distribution of prime-indexed primes, arXiv:1405.2900, 2014 (A073131, (Higher order prime numbers)
  294. B. Bates, M. Bunder, Keith Tognetti, Linking the Calkin-Wilf and Stern-Brocot trees, Eur. J. Comb. 31 (7) (2010) 1637-1661 doi:10.1016/j.ejc.2010.04.002
  295. Larry Bates, Peter Gibson, A geometry where everything is better than nice, arXiv preprint arXiv:1603.06622, 2016
  296. D. Battaglino, J. M. Fedou, S. Rinaldi and S. Socci, The number of k-parallelogram polyominoes, FPSAC 2013 Paris, France DMTCS Proc. AS, 2013, 1143-1154; http://www.liafa.univ-paris-diderot.fr/fpsac13/pdfAbstracts/dmAS0203.pdf
  297. C. Bauer, Triangular monoids and an analog to the derived sequence of a solvable group. Internat. J. Algebra Comput. 10 (2000), no. 3, 309-321.
  298. Baues, Hans-Joachim; Jibladze, Mamuka Dualization of the Hopf algebra of secondary cohomology operations and the Adams spectral sequence. J. K-Theory 7 (2011), no. 2, 203-347.
  299. Baur, Karin; Marsh, Robert J. Categorification of a frieze pattern determinant. J. Combin. Theory Ser. A 119 (2012), no. 5, 1110-1122.
  300. Karin Baur, PP Martin, The fibres of the Scott map on polygon tilings are the flip equivalence classes, arXiv preprint arXiv:1601.05080, 2016
  301. Karin Baur and Volodymyr Mazorchuk, Combinatorial analogues of ad-nilpotent ideals for untwisted affine Lie algebras, Arxiv preprint arXiv:1108.3659, 2011
  302. Michel Bauer and Olivier Golinelli, "On the Kernel of Tree Incidence Matrices", J. Integer Sequences, Volume 3, 2000, Article 00.1.4.
  303. M. Bauer and O. Golinelli, Random incidence matrices: Moments of the spectral density, J. Stat. Phys. 103, 301-307 (2001).
  304. R. Baumann, H. Strass, On the number of bipolar Boolean functions, http://www.informatik.uni-leipzig.de/~baumann/papers/bipolar.pdf, J. Symbolic Logic, to appear (2014).
  305. Karin Baur, Paul P. Martin, The packing number of the double vertex graph of the path graph, arXiv:1711.04986 [math.CO], 2017. (A001003)
  306. Karin Baur and Nolan Wallach, Nice Parabolic Subalgebras of Reductive Lie Algebras (2004), arXiv:math/0409295.
  307. Heinz H. Bauschke, Minh N. Dao, Scott B. Lindstrom, The Douglas-Rachford algorithm for a hyperplane and a doubleton, arXiv:1804.08880 [math.OC], 2018. (A074840, A097508, A188037)
  308. C. Bautista-Ramos and C. Guillen-Galvan, Fibonacci Numbers of Generalized Zykov Sums, Journal of Integer Sequences, Vol. 15, 2012, #12.7.8.
  309. A. M. Baxter, Algorithms for Permutation Statistics, Ph. D. Dissertation, Rutgers University, May 2011.
  310. A. M. Baxter, Refining enumeration schemes to count according to permutation statistics, arXiv preprint arXiv:1401.0337, 2014
  311. A. M. Baxter and A. D. Jaggard, Pattern avoidance by even permutations, Arxiv preprint arXiv:1106.3653, 2011
  312. Andrew M. Baxter and Lara K. Pudwell, Enumeration schemes for dashed patterns, Arxiv preprint arXiv:1108.2642, 2011; Discrete Math., 312 (2012), 1699-1712.
  313. Baxter, Andrew M.; Pudwell, Lara K. Enumeration schemes for vincular patterns. Discrete Math. 312 (2012), no. 10, 1699-1712.
  314. A. M. Baxter, L. K. Pudwell, Ascent sequences avoiding pairs of patterns, 2014, http://faculty.valpo.edu/lpudwell/papers/AvoidingPairs.pdf
  315. Andrew M. Baxter and Ron Umble, arXiv:math/0509292 Periodic Orbits of Billiards on an Equilateral Triangle, Amer. Math. Monthly, 115 (No. 6, 2008), 479-491.
  316. L. Bayon, P. Fortuny Ayuso, J.M. Grau, A.M. Oller-Marcen, M.M. Ruiz, The Best-or-Worst and the Postdoc problems, arXiv:1706.07185 [math.PR], 2017.
  317. L Bayon, J Grau, AM Oller-Marcen, M Ruiz, PM Suarez, A variant of the Secretary Problem: the Best or the Worst, arXiv preprint arXiv:1603.03928, 2016
  318. R. Bayon, N. Lygeros, Advanced results in enumeration of hyperstructures, Journal of Algebra, Volume 320, Issue 2, 15 July 2008, Pages 821-835.
  319. R. Bayon, N. Lygeros, The hyperrings of order 3, JIS 11 (2008) 08.3.2
  320. Abdelghafour Bazeniar, Moussa Ahmia, Hacène Belbachir, Connection between bisnomial coefficients with their analogs and symmetric functions, Turkish Journal of Mathematics, August 2017.
  321. Jonathan E. Beagley, Paul Drube, Combinatorics of Tableau Inversions, Electron. J. Combin., 22 (2015), #P2.44.
  322. P. D. Beale, A new class of scalable parallel pseudorandom number generators based on Pohlig-Hellman exponentiation ciphers, arXiv preprint arXiv:1411.2484, 2014
  323. Christian Bean, A Claesson, H Ulfarsson, Simultaneous Avoidance of a Vincular and a Covincular Pattern of Length 3, arXiv preprint arXiv:1512.03226, 2015. Published: https://www.emis.de/journals/JIS/VOL20/Bean/bean2.html
  324. Christian Bean, Bjarki Gudmundsson, Henning Ulfarsson, Automatic discovery of structural rules of permutation classes, arXiv:1705.04109 [math.CO], 2017.
  325. Christian Bean, M Tannock, H Ulfarsson, Pattern avoiding permutations and independent sets in graphs, arXiv preprint arXiv:1512.08155, 2015
  326. R. Bean, Three problems on partial Latin squares, Problem 418 (BCC19,2), Discrete Math., 293 (2005), 314-315.
  327. A. F. Beardon, P. Stephenson, The Heron parameters of a triangle, The Mathematical Gazette, July 2015, Vol. 99, Issue 545.
  328. Nicholas R. Beaton, Filippo Disanto, Anthony J. Guttmann and Simone Rinaldi, On the enumeration of column-convex permutominoes, in FPSAC 2011, Reykjav¥k, Iceland DMTCS proc. AO, 2011, 111-122; http://www-igm.univ-mlv.fr/~fpsac/FPSAC11/SITE2011/proceedings/dmAO0111.pdf.
  329. Marc J. Beauchamp, On Extremal Punctured Spheres, Dissertation, University of Pittsburgh, 2017. PDF (A001683)
  330. Cecilia Bebeacua, Toufik Mansour, Alex Postnikov, Simone Severini, On the X-rays of permutations, Electronic Notes in Discrete Mathematics, Volume 20, 1 July 2005, Pages 193-203. arXiv:math/0506334.
  331. Matteo Beccaria, Thermal properties of a string bit model at large N, arXiv:1709.01801 [hep-th], 2017.
  332. Matthias Beck, Benjamin Braun and Nguyen Le, Mahonian partition identities via polyhedral geometry, arXiv:1103.1070, 2011.
  333. Beck, Matthias; De Silva, Jessica; Dorfsman-Hopkins, Gabriel; Pruitt, Joseph; Ruiz, Amanda The combinatorics of interval-vector polytopes. Electron. J. Combin. 20 (2013), no. 3, Paper 22, 12 pp.
  334. Matthias Beck, Neville Robbins, Variations on a Generatingfunctional Theme: Enumerating Compositions with Parts Avoiding an Arithmetic Sequence, arXiv:1403.0665, 2014. Also Matthias Beck, Neville Robbins, Variations on a Generating-Function Theme: Enumerating Compositions with Parts Avoiding an Arithmetic Sequence, Amer. Math. Monthly, 122 (2015), 256-263.
  335. M. Beck and S. Robins, Computing the Continuous Discretely, Springer, 2007.
  336. M. Beck, T. Zaslavsky, Six little squares and how their numbers grow, J. Integer Sequences, 13 (2010), #10.6.2.
  337. Olivia Beckwith, Victor Luo, Stephen J. Miller, Karen Shen, Nicholas Triantafillou, Distribution of Eigenvalues of Weighted, Structured Matrix Ensembles, Electronic Journal of Combinatorial Number Theory, Volume 15 #A21. (A081054)
  338. OLIVIA BECKWITH, STEVEN J. MILLER, AND KAREN SHEN, Distribution of Eigenvalues of Weighted, Structured Matrix Ensembles, Arxiv preprint arXiv:1112.3719, 2011
  339. Andrea Bedini, Sergio Caracciolo, Andrea Sportiello, Hyperforests on the Complete Hypergraph by Grassmann Integral Representation (2008); arXiv:0802.1506
  340. Urszula Bednarz and Iwona Włoch, Fibonacci and telephone numbers in extremal trees, Discussiones Mathematicae Graph Theory. doi:10.7151/dmgt.1997
  341. Urszula Bednarz, Iwona Włoch, Note about sequences of extremal (A, 2B)-edge coloured trees, doi:10.17951/a.2017.71.2.17.
  342. U Bednarz, I Wloch, M Wolowiec-Musial, Total Graph Interpretation of the Numbers of the Fibonacci Type, Journal of Applied Mathematics, Volume 2015, Article ID 837917, 7 pages doi:10.1155/2015/837917
  343. Nelson H. F. Beebe, The Greek functions: gamma, psi, and zeta, In: The Mathematical-Function Computation Handbook, 2017. doi:10.1007/978-3-319-64110-2_18
  344. Richard M. Beekman, An Introduction to Number Theoretic Combinatorics, lulu.com, ISBN-10: 1329991168, 2017, p. 75.
  345. Connor Behan, Conformal manifolds: ODEs from OPEs, arXiv:1709.03967 [hep-th], 2017.
  346. J. Beier, M. Olsen, A not-so-simple Lie bracket expansion, Involve, a Journal of Mathematics, Vol. 7 (2014), No. 5, 647-655 doi:10.2140/involve.2014.7.647.
  347. Belbachir, Hacène; Belkhir, Amine Cross recurrence relations for r-Lah numbers. Ars Combin. 110 (2013), 199-203.
  348. Hacene Belbachir, Farid Bencherif, Sums of products of generalized Fibonacci and Lucas numbers (2007), arXiv:0708.2347.
  349. H. Belbachir, F. Bencherif, On some properties of bivariate Fibonacci and Lucas polynomials, JIS 11 (2008) 08.2.6
  350. Hacène Belbachir, Farid Bencherif and László Szalay, "Unimodality of Certain Sequences Connected With Binomial Coefficients", J. Integer Sequences, Volume 10, 2007, Article 07.2.3.
  351. Hacene Belbachir and Athmane Benmezai, Expansion of Fibonacci and Lucas Polynomials: An Answer to Prodinger's Question, Journal of Integer Sequences, Vol. 15 (2012), #12.7.6.
  352. Hacene Belbachir, Sadek Bouroubi, Abdelkader Khelladi, Connection between ordinary multinomials, generalized Fibonacci numbers, partial Bell partition polynomials and convolution powers of discrete uniform distribution (2007), arXiv:0708.2195.
  353. H. Belbachir, S. Bouroubi and A. Khelladi, Connection between ordinary multinomials, Fibonacci numbers, Bell polynomials and discrete uniform distribution, Ann. Math. Inform. 35 (2008) 21-30.
  354. Hacène Belbachir, Toufik Djellal, Jean-Gabriel Luque, On the self-convolution of generalized Fibonacci numbers, arXiv:1703.00323 [math.CO], 2017.
  355. Hacene Belbachir, Takao Komatsu, Laslo Szalay, Linear recurrences associated to rays in Pascal's Triangle and combinatorial identities, Mathem. Slovaca 64 (2) (2014) 387-300 doi:210.2478/s12175-014-0203-0
  356. H Belbachir, F Krim, Recurrences associated to rays in negative Generalized Arithmetic Triangle, Conference on Discrete Mathematics and Computer Science, Algeria, Sidi Bel Abbès, Nov 15-19, 2015; Recits Laboratory, Faculty of Mathematics, USTHB; http://www.lrecits.usthb.dz/activites.htm; pages 144-147.
  357. Belbachir, Hacène; Rahmani, Mourad; Sury, B. Sums involving moments of reciprocals of binomial coefficients. J. Integer Seq. 14 (2011), no. 6, Article 11.6.6, 16 pp.
  358. Belbachir, Hacène; Rahmani, Mourad; Sury, B. Alternating sums of the reciprocals of binomial coefficients. J. Integer Seq. 15 (2012), no. 2, Article 12.2.8, 16 pp.
  359. Sarah-Marie Belcastro, Discrete Mathematics with Ducks, CRC Press, 2012, page 242pp
  360. Nicolas Beldiceanu and Helmut Simonis, A Constraint Seeker: Finding and Ranking Global Constraints from Examples, http://4c.ucc.ie/~hsimonis/constraintseeker.pdf
  361. M. Beleggia, D. Vokoun, M. De Graef, Demagnetization factors for cylindrical shells and related shapes, Journal of Magnetism and Magnetic Materials, Volume 321, Issue 9, May 2009, Pages 1306-1315.
  362. Sarah Belet,'Round the Twist, Blog Entry, Friday May 16 2014; http://www.aums.org.au/talks/s_belet/SarahB_Round_the_Twist.pdf
  363. George I. Bell, arXiv:math/0703865 and JIS 11 (2008) 08.4.8 Solving Triangular Peg Solitaire
  364. George I. Bell, Diamond Solitaire (2007), arXiv:0711.2749.
  365. George I. Bell, Daniel S. Hirschberg and Pablo Guerrero-Garcia, The minimum size required of a solitaire army (2006), arXiv:math/0612612.
  366. Greg Bell, A Lawson, N Pritchard, D Yasaki, On locally infinite Cayley graphs of the integers, arXiv preprint arXiv:1711.00809, 2017
  367. Jason Bell, Michael Coons, and Eric Rowland, "The Rational-Transcendental Dichotomy of Mahler Functions", Journal of Integer Sequences, Vol. 16 (2013), #13.2.10.
  368. Jason Bell, Thomas Finn Lidbetter, Jeffrey Shallit, Additive Number Theory via Approximation by Regular Languages, arXiv:1804.07996 [cs.FL], 2018. (A014486, A031443, A044951, A072600, A072601, A072602, A072603)
  369. Jason Bell, Marni Mishna, On the Complexity of the Cogrowth Sequence. arXiv:1805.08118 [math.CO], 2018. (A183135, A265434)
  370. Jordan Bell, Brett Stevens, A survey of known results and research areas for n-queens, Discrete Mathematics, Volume 309, Issue 1, 6 January 2009, Pages 1-31.
  371. J. P. Bell, J. Jedwab, M. Khatirinejad and K. Schmidt, Three-phase Barker arrays, ww-e.uni-magdeburg.de/kai-usch/pub/3phase_Barker.pdf, 2013. Journal of Combinatorial Designs 23.2 (2015): 45-59.
  372. Alex Bellos, Here's Looking at Euclid: A Surprising Excursion Through the Astonishing World of Math, Simon and Schuster, 2010.
  373. Alex Bellos, Alex's Adventures in Numberland: Dispatches from the Wonderful World of Mathematics, Bloomsbury, 2010. [Chapter seven: Secrets of Succession; also includes a color photo of Neil Sloane]
  374. Alex Bellos, The Grapes of Math: How Life Reflects Numbers and Numbers Reflect Life, 2014; see Footnote 238.
  375. Alex Bellos, Neil Sloane: the man who loved only integer sequences, Alexs-adventures-in-numberland blog, The Guardian, Oct 07 2014.
  376. Pieter Belmans, Segre symbols, 2016.
  377. R. Belohlavek, V. Vychodil, Residual lattices of size <=12, Order 27 (2010) 147-161 doi:10.1007/s11083-010-9143-7
  378. Ben-Amram, Amir M. Monotonicity constraints for termination in the integer domain. Log. Methods Comput. Sci. 7 (2011), no. 3, 3:04, 43 pp.
  379. Amir M. Ben-Amram and Michael Vainer, Bounded Termination of Monotonicity-Constraint Transition Systems, Arxiv preprint arXiv:1202.4281, 2012
  380. E. Ben-Naim and P. L. Krapivsky, Popularity-Driven Networking, Arxiv preprint arXiv:1112.0049, 2011
  381. Farid Bencherif, Tarek Garici, On a property of Stirling polynomials, Publications de l'Institut Mathematique (2017), Vol. 102, Issue 116, pp. 149-153. doi:10.2298/PIM1716149B
  382. Michael A. Bender, R Chowdhury, A Conway, The I/O Complexity of Computing Prime Tables, In: Kranakis E., Navarro G., Chávez E. (eds) LATIN 2016: Theoretical Informatics. LATIN 2016. Lecture Notes in Computer Science, vol 9644. Springer, Berlin, Heidelberg
  383. Maciej Bendkowski, Quantitative aspects and generation of random lambda and combinatory logic terms, 2017. PDF (A001006, A105633)
  384. Maciej Bendkowski, Katarzyna Grygiel, Pierre Lescanne, Marek Zaionc, Combinatorics of λ-terms: a natural approach, arXiv preprint arXiv:1609.07593, 2016.
  385. Maciej Bendkowski, Katarzyna Grygiel, Pierre Lescanne, Marek Zaionc, A Natural Counting of Lambda Terms, arXiv preprint arXiv:1506.02367, 2015. (A105633, A258973)
  386. Maciej Bendkowski, K Grygiel, P Tarau, Random generation of closed simply-typed lambda-terms: a synergy between logic programming and Boltzmann samplers, arXiv preprint arXiv:1612.07682, 2016
  387. Maciej Bendkowski, Katarzyna Grygiel, Paul Tarau. Boltzmann Samplers for Closed Simply-Typed Lambda Terms. In: Y. Lierler, W. Taha (eds) Practical Aspects of Declarative Languages. PADL 2017. Lecture Notes in Computer Science, vol 10137. doi:10.1007/978-3-319-51676-9_8
  388. Maciej Bendkowski, Pierre Lescanne, Combinatorics of explicit substitutions, arXiv:1804.03862 [cs.LO], 2018. (A000108, A014137)
  389. Marcus Bendtsen, Regimes in baseball players' career data, Data Mining and Knowledge Discovery, (2017) 31:1580-1621. doi:10.1007/s10618-017-0510-5
  390. Lourdes Benito, Solutions of the problem of Erd\"os-Sierpi\'nski: sigma(n)=sigma(n+1), (2007), arXiv:0707.2190.
  391. Carolina Benedetti, Rafael S. González D’León, Christopher R. H. Hanusa, Pamela E. Harris, Apoorva Khare, Alejandro H. Morales, Martha Yip, The volume of the caracol polytope, 2018. PDF (A000111, A008282)
  392. A. Benjamin, J. Neer, D. Otero and J. A. Sellers, A Probabilistic View of Certain Weighted Fibonacci Sums, to appear in Fibonacci Quarterly.
  393. A. T. Benjamin, S. S. Plott, J. A. Sellers, doi:10.1007/s00026-008-0350-5 Tiling proofs of recent sum identities involving Pell numbers, Ann. Combin. 12 (2008) 271-278.
  394. Georgia Benkart, A Elduque, Cross products, invariants, and centralizers, arXiv preprint arXiv:1606.07588, 2016
  395. Georgia Benkart, T Halverson, N. Harman, Tensor power multiplicities for symmetric and alternating groups and dimensions of irreducible modules for partition algebras, arXiv preprint arXiv:1605.06543, 2016
  396. Georgia Benkart, T Halverson, N Harman, Dimensions of irreducible modules for partition algebras and tensor power multiplicities for symmetric and alternating groups, Preprint 2016; https://www.macalester.edu/~halverson/papers/dimensions-06-03-16.pdf
  397. G. Benkart, D. Moon, A Schur-Weyl Duality Approach to Walking on Cubes, arXiv preprint arXiv:1409.8154, 2014 and doi:10.1007/s00026-016-0311-3 Ann. Combin. 20 (3) (2016) 397-417
  398. Georgia Benkart, Dongho Moon, Walks on Graphs and Their Connections with Tensor Invariants and Centralizer Algebras, arXiv preprint arXiv:1610.07837, 2016
  399. Mark S. Bennett, Conjugacy Classes of Matrices over Finite Fields, Senior Thesis, Spring 2016, Department of Mathematics, University of Washington; https://math.washington.edu/Undergrad/Handbook/Senior%20Theses/MarkBennett_June2016.pdf
  400. Matthew Bennett, Vyjayanthi Chari, R.J. Dolbin and Nathan Manning, Square Partitions and Catalan Numbers, arXiv:0912.4983.
  401. Bennett, Matthew; Chari, Vyjayanthi; Dolbin, R. J.; Manning, Nathan Square-bounded partitions and Catalan numbers. J. Algebraic Combin. 34 (2011), no. 1, 1-18.
  402. Leonardo Bennun, A Pragmatic Smoothing Method for Improving the Quality of the Results in Atomic Spectroscopy, arXiv:1603.02061 [physics.atom-ph]
  403. Jerome Benoit, A Note on Generating Uniform Random Rational Numbers, Preprint 2016; https://www.researchgate.net/profile/Jerome_Benoit/publication/292140463_A_Note_on_Generating_Uniform_Random_Rational_Numbers/links/56a9eff608aef6e05df3c058.pdf
  404. Moussa Benoumhani, "A Sequence of Binomial Coefficients Related to Lucas and Fibonacci Numbers", J. Integer Sequences, Volume 6, 2003, Article 03.2.1.
  405. Moussa Benoumhani, "The Number of Topologies on a Finite Set", J. Integer Sequences, Volume 9, 2006, Article 06.2.6.
  406. Moussa Benoumhani, On the Modes of the Independence Polynomial of the Centipede, Journal of Integer Sequences, Vol. 15 (2012), #12.5.1.
  407. Moussa Benoumhani and Ali Jaballah, Finite fuzzy topological spaces, Fuzzy Sets and Systems, Volume 321, 15 August 2017, Pages 101-114. doi:10.1016/j.fss.2016.11.003
  408. M. Benoumhani, M. Kolli, Finite topologies and partitions, JIS 13 (2010) # 10.3.5
  409. N. BENYAHIA TANI, S. BOUROUBI, O. KIHEL, An effective approach for integer partitions using exactly two distinct sizes of parts, Bulletin du Laboratoire, 03 (2015) 18 - 27; Availaible on line at http://www.liforce.usthb.dz.
  410. N. Benyahia Tani, Z. Yahi, S. Bouroubi, Ordered and non-ordered non-isometric convex quadrilaterals inscribed in a regular n-gon, Bulletin du Laboratoire Liforce, 01 (2014) 1 - 9; http://www.liforce.usthb.dz/IMG/pdf/bulletin2014.pdf
  411. N. Benyahia-Tani et al., Ordered and non-ordered convex quadrilaterals inscribed in a regular n-gon, Conference on Discrete Mathematics and Computer Science, Algeria, Sidi Bel Abbès, Nov 15-19, 2015; Recits Laboratory, Faculty of Mathematics, USTHB; http://www.lrecits.usthb.dz/activites.htm; pages 6-8.
  412. Beata Bényi, Advances in Bijective Combinatorics, Ph. D. Dissertation, Doctoral School of Mathematics and Computer Science, University of Szeged, Bolyai Institute, 2014; http://doktori.bibl.u-szeged.hu/2410/3/B%C3%A9nyi_Be%C3%A1ta_abstract.pdf
  413. Beata Benyi, Restricted lonesum matrices, arXiv preprint arXiv:1711.10178, 2017.
  414. B. Bényi and P. Hajnal, Combinatorics of poly-Bernoulli numbers, in Proc. 8th Japanese-Hungarian Symposium on Discrete Mathematics and Its Applications June 4-7, 2013 in Veszprém, Hungary
  415. Beata Bényi, Peter Hajnal, Combinatorial properties of poly-Bernoulli relatives, arXiv preprint arXiv:1602.08684, 2016
  416. Beáta Bényi, Péter Hajnal, Poly-Bernoulli Numbers and Eulerian Numbers, arXiv:1804.01868 [math.CO], 2018. (A008282, A027641, A027642, A008277, A099594)
  417. Beáta Bényi and Gábor V. Nagy, Bijective enumerations of Γ-free 0-1 matrices, arXiv:1707.06899 [math.CO], 2017.
  418. Beáta Bényi, José L. Ramírez, Some Applications of S-restricted Set Partitions, arXiv:1804.03949 [math.CO], 2018. (A000110, A000670)
  419. Soumendra Bera, An Expression Involving All Ordered Compositions of the First n Ordered Natural Numbers and Two Classic Polynomials, IOSR Journal of Mathematics, Volume 12, Issue 5 Ver. I (Sep. - Oct. 2016), pp. 55-64.
  420. Allan Berele and Bridget Eileen Tenner, Doubly Symmetric Functions (2009) arXiv:0903.5306
  421. Daniel Berend, Shira Zucker, The Asymptotics of Useless Hint Sequences in Nonograms, J. Int. Seq., Vol. 21 (2018), Article 18.4.2. HTML (A304179)
  422. Arkady BERENSTEIN, Vladimir RETAKH, Christophe REUTENAUER and Doron ZEILBERGER, The Reciprocal of Sum_{n >= 0} a^n b^n for non-commuting a and b, Catalan numbers and non-commutative quadratic equations, Arxiv preprint arXiv:1206.4225, 2012
  423. Julien Berestycki, Eric Brunet and Zhan Shi, How many evolutionary histories only increase fitness?, arXiv preprint arXiv:1304.0246, 2013
  424. J. Berestycki, É. Brunet, Z. Shi, Accessibility percolation with backsteps, arXiv preprint arXiv:1401.6894, 2014
  425. C. Berg, V. Pons, T. Scrimshaw, J. Striker, C. Stump, FindStat - the combinatorial statistics database, arXiv:1401.3690
  426. Devin R. Berg and Perry Y. Li, Hydraulic Valve for Miniature Surgical Robot Applications, Advanced Robotics (April 2018), to appear.
  427. A. Berger and T. P. Hill, An Introduction to Benford's Law, Princeton, 2015.
  428. F. Bergeron and F. Gascon, "Counting Young Tableaux of Bounded Height", J. Integer Sequences, Volume 3, 2000, Article 00.1.7.
  429. F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998.
  430. F. Bergeron and S. Plouffe, Computing the Generating Function of a Series Given its First Few Terms, Experimental Mathematics , Volume 1, (1992), 307-312. (ps.gz, pdf )
  431. H. Bergeron, E. M. F. Curado, J. P. Gazeau and L. M. C. S. Rodrigues, A note about combinatorial sequences and Incomplete Gamma function, arXiv preprint arXiv:1309.6910, 2013
  432. N. Bergeron, F. Descouens, M. Zabrocki, A Filtration of (q,t)-Catalan numbers (2008); arXiv:0806.3046
  433. Bergeron, N.; Hohlweg, C.; Zabrocki, M., Posets related to the connectivity set of Coxeter groups. J. Algebra 303 (2006), no. 2, 831-846.
  434. N. Bergeron, S. Mykytiuk, F. Sottile and S. J. van Willigenburg, Shifted quasi-symmetric functions and the Hopf algebra of peak functions, Discrete Math., 256 (2002), 57-66. arXiv:math.CO/9904105
  435. Nantel Bergeron, Mike Zabrocki, The Hopf algebras of symmetric functions and quasisymmetric functions in non-commutative variables are free and cofree (2005), arXiv:math/0509265.
  436. Mayfawny Bergmann, Efficiency of Lossless Compression of a Binary Tree via its Minimal Directed Acyclic Graph Representation. Rose-Hulman Undergraduate Mathematics Journal: Vol. 15 : Iss. 2, Article 1. (2014).
  437. J. A. Bergstra, I. Bethke, A negative result on algebraic specifications of the meadow of rational numbers, arXiv preprint arXiv:1507.00548, 2015
  438. G. Berkolaiko and J.P. Keating, Two-point spectral correlations for star graphs, J. Phys. A 32 (1999), 7827-7841.
  439. Adam H Berliner, N Dean, J Hook, A Marr, A Mbirika, Coprime and prime labelings of graphs, arXiv preprint arXiv:1604.07698, 2016
  440. D. S. Berman, M. Cederwall, A. Kleinschmidt and D. C. Thompson, The gauge structure of generalised diffeomorphisms, Arxiv preprint arXiv:1208.5884, 2012.
  441. Leah Wrenn Berman, GG Chappell, JR Faudree, J Gimbel, et al., Graphs with obstacle number greater than one, arXiv preprint arXiv:1606.03782, 2016
  442. Jeranfer Bermúdez, Richard García, Reynaldo López and Lourdes Morales, SOME PROPERTIES OF LATIN SQUARES, http://ccom.uprrp.edu/~labemmy/Wordpress/wp-content/uploads/2010/11/4_Presentation_Some-Properties-of-Latin-Squares_March2009.pdf
  443. Bernardini, Matheus, and Fernando Torres. "Counting numerical semigroups by genus and even gaps." Discrete Mathematics 340.12 (2017): 2853-2863. Also arXiv:1612.01212.
  444. F. R. Bernhart, Catalan, Motzkin and Riordan numbers, Discr. Math., 204 (1999) 73-112.
  445. Antonio Bernini, Filippo Disanto, Renzo Pinzani and Simone Rinaldi, "Permutations Defining Convex Permutominoes", J. Integer Sequences, Volume 10, 2007, Article 07.9.7.
  446. A. Bernini, L. Ferrari, R. Pinzani and J. West, The Dyck pattern poset, arXiv preprint arXiv:1303.3785, 2013
  447. A. Bernini, L. Ferrari, R. Pinzani, J. West, Pattern-avoiding Dyck paths, FPSAC 2013 Paris, France DMTCS Proc. AS, 2013, 713-724
  448. Antonio Bernini and Elisa Pergola, "Enumerating Permutations Avoiding More Than Three Babson-Steingrimsson Patterns", J. Integer Sequences, Volume 10, 2007, Article 07.6.4.
  449. Daniel J. Bernstein, S Engels, T Lange, R Niederhagen, et al.,… Faster elliptic-curve discrete logarithms on FPGAs, Preprint, 2016; https://cr.yp.to/dlog/sect113r2-20160806.pdf
  450. D. Bernstein and T. Lange, Two grumpy giants and a baby, in ANTS X, Proc. Tenth Algorithmic Number Theory Symposium, 2013; doi:10.2140/obs.2013.1.87; PDF.
  451. M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Algebra and Its Applications, vol. 226-228, pp. 57-72, 1995. Erratum: Linear Algebra Appl. 320 (2000), no. 1-3, 210.
  452. M. Bernstein, N. J. A. Sloane and P. E. Wright, On Sublattices of the Hexagonal Lattice, doi:10.1016/0012-365X(95)00354-Y Discrete Math., 170 (1997) 29-39.
  453. Berndt, Bruce C.; Kim, Sun; Zaharescu, Alexandru Diophantine approximation of the exponential function and Sondow's Conjecture. Adv. Math. 248 (2013), 1298-1331.
  454. Achilles A. Beros, Bjørn Kjos-Hanssen, Daylan Kaui, The number of long words having a given automatic complexity*, 2018. PDF (A152061)
  455. D. Berry, J. Broom, D. Dixon, A. Flaherty, Umbral Calculus and the Boustrophedon Transform, 2013; https://www.math.lsu.edu/system/files/DeAngelisProject2.pdf
  456. Berstel, Jean, Growth of repetition-free words--a review. Theoret. Comput. Sci. 340 (2005), no. 2, 280-290.
  457. A. Bertagnolli, The Stick Problem, 2013; http://ajbertagnolli.com/wp-content/uploads/2013/10/sticks2.pdf
  458. Antoine Bertout, Julien Forget and Richard Olejnik, Automated runnable to task mapping, Research Report, LIFL, University of Lille, France, May 2013; http://hal.archives-ouvertes.fr/docs/00/82/77/98/PDF/foo.pdf.
  459. Antoine Bertout, Julien Forget and Richard Olejnik, A heuristic to minimize the cardinality of a real-time task set by automated task clustering, in 29th Annual ACM Symposium on Applied Computing (2014); http://hal.univ-lille3.fr/docs/01/01/61/82/PDF/bertoutSAC14.pdf
  460. Antoine Bertout, Julien Forget, Richard Olejnik. Minimizing a real-time task set through Task Clustering. Proceedings of the 22nd International Conference on Real-Time Networks and Systems, Oct 2014, Versailles, France. pp.23-31, 10.1145/2659787.2659820. hal-01073565
  461. Bessenrodt, Christine; Olsson, J. B., A note on Cartan matrices for symmetric groups. Arch. Math. (Basel) 81 (2003), no. 5, 497-504.
  462. Bessenrodt, Christine; Olsson, J.; Sellers, James A. Unique path partitions: characterization and congruences. Ann. Comb. 17 (2013), no. 4, 591-602.
  463. A. Betten and D. Betten, Linear Spaces with at Most 12 Points, Journal of Combinatorial Designs 7 (1999), 119-145.
  464. D. Betten, Kalahari and the Sequence "Sloane No. 377", Annals Discrete Math., 37, 51-58, 1988.
  465. Robert J. Betts, "Using Bonse's Inequality to Find Upper Bounds on Prime Gaps", J. Integer Sequences, Volume 10, 2007, Article 07.3.8.
  466. Frits Beukers, Florian Luca and Frans Oort, Power values of divisor sums, Amer. Math. Monthly, 119 (May 2012). 373-380.
  467. Bevan, David, Sets of points determining only acute angles and some related colouring problems. Electron. J. Combin. 13 (2006), no. 1, Research Paper 12, 24 pp.
  468. D. Bevan, The permutation classes Av(1234, 2341) and Av(1243, 2314), arXiv preprint arXiv:1407.0570, 2014
  469. David Bevan, The permutation class Av (4213, 2143), arXiv preprint arXiv:1510.06328, 2015
  470. David Bevan, R Brignall, AE Price, J Pantone, New bounds on the growth rate of 1324-avoiders, arXiv preprint arXiv:1711.10325, 2017
  471. D Bevan, D Levin, P Nugent, J Pantone, L Pudwell, Pattern avoidance in forests of binary shrubs, arXiv preprint arXiv:1510:08036, 2015
  472. E. Beyerstedt, V. H. Moll, X. Sun, The p-adic Valuation of the ASM Numbers, J. Int. Seq. 14 (2011) # 11.8.7
  473. P. Bhadouria, D. Jhala, B. Singh, Binomial Transforms of the k-Lucas Sequences and its [sic] Properties, The Journal of Mathematics and Computer Science (JMCS), Volume 8, Issue 1, Pages 81-92; http://www.tjmcs.com/includes/files/articles/Vol8_Iss1_81%20-%2092_Binomial_Transforms_of_the_k-Lucas.pdf
  474. Gaurav Bhatnagar, Christian Krattenthaler, Spiral determinants, arXiv:1704.02859 [math.CO], 2017. ["The On-Line Encyclopedia of Integer Sequences [6] told him that the determinants of these matrices were given by sequence A079340, and a conjectured formula could be found there."]
  475. Abhik Bhuin, A key problem between mathematics & measurement, International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online), http://www.cibtech.org/jpms.htm, 2014 Vol. 4 (4) October-December, pp. 43-44
  476. Sushil Bhunia, Dilpreet Kaur, Anupam Singh, z-Classes and Rational Conjugacy Classes in Alternating Groups, arXiv:1705.06651 [math.GR], 2017.

About this page

  • This is part of the series of OEIS Wiki pages that list works citing the OEIS.
  • Additions to these pages are welcomed.
  • But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
  • If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
  • Works are arranged in alphabetical order by author's last name.
  • Works with the same set of authors are arranged by date, starting with the oldest.
  • The full list of sections is: A Ba Bi Ca Ci D E F G H I J K L M N O P Q R Sa Sl T U V W X Y Z.
  • For further information, see the main page for Works Citing OEIS.