This site is supported by donations to The OEIS Foundation.
Calendar for Sequence of the Day in November
Calendar for Sequence of the Day in October * Calendar for Sequence of the Day in December
Template:Sequence of the Day for November 1 A042972: Decimal expansion of .
Since this works out to which is a real number! We all know about the square root of 2, and perhaps some of us have given some thought to the cubic root of 3, the fourth root of 4, the fifth root of 5, etc. Now, here's the ^{th} root of the imaginary unit ! By now, you probably want to find out the ^{th} root of or the ^{th} root of ... or are you looking for the ^{th} root of or the ^{th} root of ?
 
Template:Sequence of the Day for November 2 A1102345: Sequence name.
A sentence or two about this sequence.

Template:Sequence of the Day for November 3 A119258: Triangle read by rows ≥ 0: and for : .
This sequence is a Pascallike triangle (see Pascal triangle). It appears naturally in combinatorics, topology, representation theory, computer science and numerical analysis. The natural formula for the terms seems to depend heavily on the context in which they appear, but it is not hard to show by hand that all these formulae satisfy the defining recursive formula.

Template:Sequence of the Day for November 4 A008292: The triangle of Eulerian numbers 1 1 1 1 4 1 1 11 11 1 1 26 66 26 1 1 57 302 302 57 1 1 120 1191 2416 1191 120 1 ... ... ... is given by the coefficients of the Eulerian polynomials which appear as the numerator in an expression for the generating function of the sequence . The Eulerian number is the number of permutations of the numbers 1 to in which exactly elements are greater than the previous element. The subsequence of Eulerian numbers > 1, which are those not lying on the border of the triangle, i.e., with , is A014449 = {4, 11, 11, ...}. ExampleFor , the sequence {1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, ...} has the generating function

Template:Sequence of the Day for November 5 A066342: Number of triangulations of the cyclic polytope .
Formerly only generated by brute force in TOPCOM or the like, a surprisingly easy formula was conjectured by Santos, and finally proved in 2002 by M. Azaola and F. Santos. And closed formulas for the numbers of triangulations of other infinite classes of polytopes are rare: The Catalan numbers count the number of triangulations of ngons—but that's about it.

Template:Sequence of the Day for November 6 A1102345: Title.
Paragraph or two of info.

Template:Sequence of the Day for November 7 A002620: Quartersquares: . Equivalently, .
This sequence is fairly simple, just the interleaving of two already simple sequences, namely the squares (A000290) and the pronic numbers (A002378), i.e. the [even index/odd index] bisections of this sequence are where is the ^{th} triangular number. The recurrences for the [even index/odd index] bisections are
which leads to the simple recurrence where floor(/2) is given by A004526. Suppose you try to fill an discrete grid, node by node, keeping what is covered as compact and simple as possible. If you start with a square covering nodes, you'll add one column (of nodes) covering nodes, then add another row (of nodes), to now cover nodes. Covering nodes in this 'herringbone' pattern generates the quarter squares.

Template:Sequence of the Day for November 8 A1102345: Title.
Paragraph or two of info.
 
Template:Sequence of the Day for November 9 A193018: The largest integer that cannot be written as the sum of squares of integers larger than , ≥ 2.
What is the true order of this sequence? Obviously, the smallest integer that can be written thusly is (or if we want two terms). The upper bound can be obtained via Sylvester's theorem, so (the lower bound being trivial).

Template:Sequence of the Day for November 10 A184997: Number of distinct remainders that are possible when a safe prime is divided by (for ).
Per the Chinese remainder theorem, this sequence is multiplicative. Today marks the 236th anniversary of the founding of the U. S. Marine Corps (back then the Continental Marines) at Tun Tavern.

Template:Sequence of the Day for November 11 A053664: Smallest number such that for
This is a sequence that was suggested to Joe Crump by the Chinese remainder theorem. I've heard theories that the Chinese proved that theorem because it had a practical application as a means to quickly and efficiently count soldiers. On this Veterans' Day, we salute all those who have served in the Army, Air Force, Navy and Marine Corps.

Template:Sequence of the Day for November 12 A158624: Upper limit of backward value (base 10) of .
The "backward value (base 10)" of 25 is 0.52; of 125, 0.521; of 625, 0.526; of 3125, 0.5213; etc. Since it follows that the backward value of starts out 0.5. Furthermore, since the next to least significant digit is 2 for all and the backward value therefore in those cases always starts out 0.52. It is a little harder to prove that any subsequent digit of this constant is either 5, 6, 7, 8 or 9 but not 0, 1, 2, 3 or 4. See also: A158625 Lower limit of backward value (base 10) of .

Template:Sequence of the Day for November 13 A031347: Multiplicative digital root of (keep multiplying [base 10] digits of until reaching a single digit).
This is one of the original basedependent integer sequences in the OEIS, but not much seems to be known about it (at least, judging from its entry). What is the asymptotic behavior of ? (Of course it is , but more specifically?) How often does ? Etc. Since among the nonnegative integers in [0, ] with , ≥ 2, digits [base 10], there are (the first digit being nonzero) integers not containing the digit 0, and this implies that, asymptotically, 100% of the multiplicative digital roots are 0, i.e. the asymptotic density of nonzero multiplicative digital roots is 0. What about the partial sums which will then grow by a nonzero finite amount (1 to 9) asymptotically 0% of the time. See also:

Template:Sequence of the Day for November 14 A1102345: Sequence name.
A sentence or two about this sequence.

Template:Sequence of the Day for November 15 A049310: Triangle of coefficients of Chebyshev's S(n, x) := U(n, x/2) polynomials.
This sequence appears in linear atomic chains with N uniformly harmonic interacting atoms of the same mass. The eigenmodes have scaled frequency squares x given by the zeros of S(N, 2(1x)). The recurrence for the oscillations with frequency omega and displacement q_n from the equilibrium position at site no. n, q_n(t) = q_n * exp(i omega t) (i being the complex unit) is
Here x := omega^2 / (2 (omega_0)^2), the normalized frequency squared, with omega_0 := k/m, where k is the uniform spring constant and m is the atom's mass. This leads to a so called 2x2 transfer matrix
Iteration yields
with M_n(x) = R(x)^n, and the two arbitrary inputs q_{1} and q_{0}. It follows that
due to the recurrence for the Spolynomials:
Thus one obtains the general solution for the displacements
For finite Nchains, with fixed boundary conditions q_0 = 0 = q_{N+1}, one therefore has to solve S(N, 2(1x)) = 0, and thus obtains the N normalized eigenfrequency squares for the Nchain:
A side remark: because Det R(x) = 1, also Det M_n(x) = 1, identically, therefore on has the so called CassiniSimson identity
For this and another nine applications of this sequence and the row polynomials S(n, x) see the a link under A049310.
 
Template:Sequence of the Day for November 16 A047679: Denominator in full SternBrocot tree.
This sequence includes the terms 16, 11, 11 and 11, 16. As such, it can represent both 16 November '11 and November 16. Beyond that, the SternBrocot tree is a fascinating way to approximate real numbers using fractions. This image (http://www.kerrymitchellart.com/gallery24/inspired.html) shows a representation of approximating phi, the Golden Ratio. In the image, the widths of the spires are related to the denominators of the fractions encountered. Smaller denominators lead to larger structures.

Template:Sequence of the Day for November 17 A1102345: Sequence name.
A sentence or two about this sequence.

Template:Sequence of the Day for November 18 A060003: Odd numbers not of the form for prime and .
On November 18, 1752, Christian Goldbach wrote a letter to Leonhard Euler in which he conjectured that every odd integer can be expressed as the sum of a prime and twice a square. Euler verified this lesser known conjecture of Goldbach's up to 2500 and found no counterexamples. Goldbach did allow the square to be zero and considered 1 a prime number, and thus 3, 5, 7 are taken care of with 0^{2}, 9 = 1 + 2 × 2^{2} or 7 + 2 × 1^{2}, etc. When Moritz Stern read the GoldbachEuler correspondence, he became interested in this problem and checked up to 9000, finding the composite numbers 5777 and 5993. With 5777, we can now quickly verify that not only is each composite, quite a few of them are not squarefree. And if we considered 1 prime like they did back then, it would not help here, since 5776 = 2^{4} × 19^{2}. By requiring , a prime needs a smaller prime for its representation as . For the primes in this sequence, now known as the Stern primes, there is no smaller prime such that the difference is twice a square. With modern computers, M. F. Hasler and Benjamin Chaffin have verified there are no more terms up to 2 × 10^{13}.

Template:Sequence of the Day for November 19 A065444: Decimal expansion of
This is the sum of the reciprocals of the base 10 repunits.

Template:Sequence of the Day for November 20 A200000: Number of meanders filling out an by grid, reduced for symmetry.
The sequence counts the distinct closed paths that visit every cell of an by square lattice at least once, that never cross any edge between adjacent squares more than once, and that do not selfintersect. Paths related by rotation and/or reflection of the square lattice are not considered distinct. This sequence is the official selection to commemorate the milestone of the OEIS containing two hundred thousand sequences, which was reached exactly a year ago today.

Template:Sequence of the Day for November 21 A1102345: Sequence name.
A sentence or two about this sequence.

Template:Sequence of the Day for November 22 A1134567: Sequence title.
Two or three sentences of info about this sequence.
 
Template:Sequence of the Day for November 23 A001302: Number of ways of making change for cents using coins of 1, 2, 5, 10, 25, 50 cents.
Here we are showing this sequence starting at because before that point it is exactly the same as A001301. Having some half dollar pieces in the cash register gives slightly more options for making change when making change for more than 49 cents.

Template:Sequence of the Day for November 24 A002324: Number of divisors of congruent to 1 modulo 3 minus number of divisors of congruent to 2 modulo 3.
These are the coefficients in expansion of Dirichlet series where is the ^{th} prime. Note: m was 3 in the formula, it makes more sense for it to be 3, would someone please confirm wether the formula is right.

Template:Sequence of the Day for November 25 A001788: .
This is the sum, over all nonempty subsets of {1, 2, ..., }, of all elements of . For example, : the nonempty subsets are {1, 2, 3}, {1, 2}, {1, 3}, {2, 3}, {1}, {2}, {3} and 1 + 2 + 3 + 1 + 2 + 1 + 3 + 2 + 3 + 1 + 2 + 3 = 24. Equivalently, this is the sum of all nodes (except the last one, equal to ) of all integer compositions of .

Template:Sequence of the Day for November 26 A1202345: Sequence name.
A sentence or two about this sequence.

Template:Sequence of the Day for November 27 A164003: Decimal expansion of .
One has to be careful about branches of multivalued complex functions. By definition is (using any of the branches of the logarithm function) (for any integer ) . There is no imaginary part in any of its branches. If we get (–1) times the present constant.

Template:Sequence of the Day for November 28
A000055: Number of trees with unlabeled nodes.
This is the sequence for the example search on the front page of the OEIS. This Thanksgiving we are thankful for, among other things, the OEIS, which is an invaluable resource in many mathematical and scientific endeavors.

Template:Sequence of the Day for November 29 A054551: Prime number spiral (clockwise, North spoke).
I WILL HAVE TO PUT IN THE RIGHT NUMBERS BELOW ANOTHER DAY
Of course the spiral may be rotated, but the sequences though pointing in different directions, will remain the same.
 
Template:Sequence of the Day for November 30 A051682: 11gonal numbers, .
T. D. Noe has proved that there are no 11gonal numbers greater than 1 that are also triangular numbers.
