login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or to make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: 1114
Displaying 1-10 of 330 results found. page 1 2 3 4 5 6 7 8 9 10 ... 33
     Sort: relevance | references | number | modified | created      Format: long | short | data
A045918 Describe n. Also called the "Say What You See" or "Look and Say" sequence LS(n). +20
41
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1110, 21, 1112, 1113, 1114, 1115, 1116, 1117, 1118, 1119, 1210, 1211, 22, 1213, 1214, 1215, 1216, 1217, 1218, 1219, 1310, 1311, 1312, 23, 1314, 1315, 1316, 1317, 1318, 1319, 1410, 1411, 1412 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

a(111111111) = a((10^10 - 1)/9) = 101 is the first term with an odd number of digits; 3-digit terms are unambiguous, but already the 2nd 4-digit term is LS( 12 ) = 1112 = LS( 2*(10^111-1)/9 ) ("hundred eleven 2's"). The smallest n such that LS(n) = LS(k) for some k < n (i.e. the largest n such that the restriction of LS to [0..n-1] is injective) appears to be 10*(10^11 - 1)/9 : LS(eleven '1's, one '0') = 11110 = LS(one '1', eleven '0's). - M. F. Hasler, Nov 14 2006

A121993 gives numbers m such that a(m) < m. - Reinhard Zumkeller, Jan 25 2014

REFERENCES

J. H. Conway, The weird and wonderful chemistry of audioactive decay, in T. M. Cover and Gopinath, eds., Open Problems in Communication and Computation, Springer, NY 1987, pp. 173-188.

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..10000

Kevin Watkins, Abstract Interpretation Using Laziness: Proving Conway's Lost Cosmological Theorem,

Kevin Watkins, Proving Conway's Lost Cosmological Theorem, POP seminar talk, CMU, Dec 2006

Eric Weisstein's World of Mathematics, Look and Say Sequence

Wikipedia, Look-and-say sequence

EXAMPLE

23 has "one 2, one 3", so a(23) = 1213.

MAPLE

LS:=n-> if n>9 then LS(op(convert(n, base, 10))) else for i from 2 to nargs do if args[i] <> n then RETURN(( LS( args[i..nargs] )*10^length(i-1) + i-1)*10 + n ) fi od: 10*nargs + n fi; # M. F. Hasler, Nov 14 2006

MATHEMATICA

LookAndSayA[n_]  := FromDigits@ Flatten@ IntegerDigits@ Flatten[ Through[{Length, First}[#]] & /@ Split@ IntegerDigits@ n] (* Robert G. Wilson v, Jan 27 2012 *)

PROG

(PARI) A045918(a)={my(c=1); for(j=2, #a=Vec(Str(a)), if(a[j-1]==a[j], a[j-1]=""; c++, a[j-1]=Str(c, a[j-1]); c=1)); a[#a]=Str(c, a[#a]); eval(concat(a))}  \\ M. F. Hasler, Jan 27 2012

(Haskell)  see Watkins link, p. 3.

import Data.List (unfoldr, group); import Data.Tuple (swap)

a045918 0 = 10

a045918 n = foldl (\v d -> 10 * v + d) 0 $ say $ reverse $ unfoldr

   (\x -> if x == 0 then Nothing else Just $ swap $ divMod x 10) n

   where say = concat . map code . group

         code xs = [toInteger $ length xs, head xs]

-- Reinhard Zumkeller, Aug 09 2012

(Python)

from re import finditer

def A045918(n):

....return int(''.join([str(len(m.group(0)))+m.group(0)[0] for m in finditer(r'(\d)\1*', str(n))]))

# Chai Wah Wu, Dec 03 2014

CROSSREFS

Cf. A005150. See also A056815.

KEYWORD

nonn,base

AUTHOR

N. J. A. Sloane

EXTENSIONS

Added Mma program from A056815. - N. J. A. Sloane, Feb 02 2012

STATUS

approved

A146345 a(n) = Indices in A146326 when records occured. +20
37
2, 6, 18, 31, 43, 94, 106, 151, 211, 331, 394, 526, 694, 751, 886, 919, 1114, 1324 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Table of n, a(n) for n=1..18.

MAPLE

A146326 := proc(n) if not issqr(n) then numtheory[cfrac]( (1+sqrt(n))/2, 'periodic', 'quotients') ; nops(%[2]) ; else 0 ; fi; end: read("transforms") ; a26 := [seq(A146326(n), n=1..1400)] ; RECORDS(a26)[2] ; [From R. J. Mathar, Sep 06 2009]

MATHEMATICA

$MaxExtraPrecision = 300; s = 10; aa = {}; Do[k = ContinuedFraction[(1 + Sqrt[n])/2, 1000]; If[Length[k] < 190, AppendTo[aa, 0], m = 1; While[k[[s ]] != k[[s + m]] || k[[s + m]] != k[[s + 2 m]] || k[[s + 2 m]] != k[[s + 3 m]] || k[[s + 3 m]] != k[[s + 4 m]], m++ ]; s = s + 1; While[k[[s ]] != k[[s + m]] || k[[s + m]] != k[[s + 2 m]] || k[[s + 2 m]] != k[[s + 3 m]] || k[[s + 3 m]] != k[[s + 4 m]], m++ ]; AppendTo[aa, m]], {n, 1, 1024}]; Print[aa]; bb = {}; m = 0; Do[If[aa[[k]] > m, AppendTo[bb, k]; m = aa[[k]]], {k, 1, Length[aa]}]; bb (*Artur Jasinski*)

CROSSREFS

A000290, A078370, A146326-A146345, A146348-A146360, A146363.

KEYWORD

nonn

AUTHOR

Artur Jasinski, Oct 30 2008

EXTENSIONS

19 replaced by 18. 394 inserted. 4 more terms added - R. J. Mathar, Sep 06 2009

STATUS

approved

A052221 Numbers whose sum of digits is 7. +20
34
7, 16, 25, 34, 43, 52, 61, 70, 106, 115, 124, 133, 142, 151, 160, 205, 214, 223, 232, 241, 250, 304, 313, 322, 331, 340, 403, 412, 421, 430, 502, 511, 520, 601, 610, 700, 1006, 1015, 1024, 1033, 1042, 1051, 1060, 1105, 1114, 1123, 1132, 1141, 1150, 1204 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

A007953(a(n)) = 7; number of repdigits = #{7,1111111} = A242627(7) = 2. - Reinhard Zumkeller, Jul 17 2014

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

MATHEMATICA

Select[Range[1500], Total[IntegerDigits[#]]==7&] (* Harvey P. Dale, Apr 11 2012 *)

PROG

(MAGMA) [n: n in [1..1500] | &+Intseq(n) eq 7 ]; // Vincenzo Librandi, Mar 08 2013

(Haskell)

a052221 n = a052221_list !! (n-1)

a052221_list = filter ((== 7) . a007953) [0..]

-- Reinhard Zumkeller, Jul 17 2014

CROSSREFS

Cf. A007953.

Cf. A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225(14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).

A242614, A242627.

KEYWORD

nonn,base,easy

AUTHOR

Henry Bottomley, Feb 01 2000

EXTENSIONS

Offset changed from Bruno Berselli, Mar 07 2013

STATUS

approved

A217089 Numbers n such that (n^97-1)/(n-1) is prime. +20
25
12, 90, 104, 234, 271, 339, 420, 421, 428, 429, 464, 805, 909, 934, 1054, 1114, 1116, 1128, 1144, 1159, 1193, 1364, 1788, 2086, 2215, 2254, 2448, 2461, 2593, 2595, 2771, 2787, 2829, 2859, 2952, 3029, 3075, 3144, 3250, 3265, 3268, 3301, 3701, 3752, 3875, 4026 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..300

MATHEMATICA

Select[Range[2, 1000], PrimeQ[(#^97 - 1)/(# - 1)] &] (* T. D. Noe, Sep 26 2012 *)

CROSSREFS

Cf. A002384, A049409, A100330, A162862, A217070-A217088.

KEYWORD

nonn

AUTHOR

Tim Johannes Ohrtmann, Sep 26 2012

EXTENSIONS

More terms from T. D. Noe, Sep 26 2012

STATUS

approved

A047842 Describe n (ignoring missing digits). +20
23
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1011, 21, 1112, 1113, 1114, 1115, 1116, 1117, 1118, 1119, 1012, 1112, 22, 1213, 1214, 1215, 1216, 1217, 1218, 1219, 1013, 1113, 1213, 23, 1314, 1315, 1316, 1317, 1318, 1319, 1014, 1114, 1214, 1314, 24, 1415, 1416 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Digit count of n. The digit count numerically summarizes the frequency of digits 0 through 9 in that order when they occur in a number. - Lekraj Beedassy, Jan 11 2007

Numbers which are digital permutations of one another have the same digit count. Compare with first entries of "Look And Say " or LS sequence A045918. As in the latter, a(n) has first odd-numbered-digit entry occurring at n=1111111111 with digit count 101, but a(n) has first ambiguous term 1011. For digit count invariants, i.e. n such that a(n)=n, see A047841. - Lekraj Beedassy, Jan 11 2007

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..10000

FORMULA

a(a(n)) = A235775(n).

a(A010785(n)) = A244112(A010785(n)). - Reinhard Zumkeller, Nov 11 2014

EXAMPLE

a(31)=1113 because (one 1, one 3) make up 31.

101 contains one 0 and two 1's, so a(101)=1021.

a(131)=2113.

MATHEMATICA

dc[n_] :=FromDigits@Flatten@Select[Table[{DigitCount[n, 10, k], k}, {k, 0, 9}], #[[1]] > 0 &]; Table[dc[n], {n, 0, 46}] (* Ray Chandler *)

PROG

(Haskell)

import Data.List (sort, group); import Data.Function (on)

a047842 :: Integer -> Integer

a047842 n = read $ concat $

   zipWith ((++) `on` show) (map length xs) (map head xs)

   where xs = group $ sort $ map (read . return) $ show n

-- Reinhard Zumkeller, Jan 15 2014

(Python)

def A047842(n):

....s, x = '', str(n)

....for i in range(10):

........y = str(i)

........c = str(x.count(y))

........if c != '0':

............s += c+y

....return int(s) # Chai Wah Wu, Jan 03 2015

CROSSREFS

Cf. A005151, A047841, A047843, A127354, A127355.

Cf. A235775.

Cf. A244112, A010785.

KEYWORD

nonn,easy,base,nice

AUTHOR

N. J. A. Sloane.

EXTENSIONS

Edited by N. J. A. Sloane, Jul 03 2008 at the suggestion of R. J. Mathar

STATUS

approved

A252532 T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with every 3X3 subblock row and diagonal sum equal to 0 2 3 6 or 7 and every 3X3 column and antidiagonal sum not equal to 0 2 3 6 or 7 +20
17
750, 730, 595, 621, 337, 460, 719, 341, 334, 535, 778, 462, 466, 426, 546, 932, 706, 626, 610, 676, 649, 1200, 1000, 1120, 790, 1114, 964, 823, 1498, 1468, 1760, 1592, 1676, 1748, 1344, 1036, 1968, 2420, 2404, 2440, 4420, 2504, 2332, 2312, 1328, 2708, 3480 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Table starts

..750..730..621...719...778....932...1200....1498....1968....2708.....3473

..595..337..341...462...706...1000...1468....2420....3480....5240.....8872

..460..334..466...626..1120...1760...2404....4304....6832....9416....16864

..535..426..610...790..1592...2440...3160....6368....9760...12640....25472

..546..676.1114..1676..4420...7184..11456...31136...50560...83840...232192

..649..964.1748..2504..7136..13184..19232...54656..102272..150656...427520

..823.1344.2332..3160.10720..18656..25280...85760..149248..202240...686080

.1036.2312.4244..6704.30752..54464..91648..433664..763904.1341440..6471680

.1328.3336.6760.10016.49792.101888.153856..760832.1580032.2410496.11886592

.1756.4800.9112.12640.77696.145792.202240.1243136.2332672.3235840.19890176

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..612

FORMULA

Empirical for column k:

k=1: a(n) = 4*a(n-3) -3*a(n-6) -4*a(n-9) +4*a(n-12) for n>23

k=2: a(n) = 6*a(n-3) -8*a(n-6) for n>10

k=3: a(n) = 6*a(n-3) -8*a(n-6) for n>8

k=4: a(n) = 4*a(n-3) for n>5

k=5: a(n) = 12*a(n-3) -32*a(n-6) for n>8

k=6: a(n) = 12*a(n-3) -32*a(n-6) for n>8

k=7: a(n) = 8*a(n-3) for n>5

Empirical for row n:

n=1: a(n) = 4*a(n-3) -3*a(n-6) -4*a(n-9) +4*a(n-12) for n>39

n=2: a(n) = 6*a(n-3) -8*a(n-6) for n>10

n=3: a(n) = 6*a(n-3) -8*a(n-6) for n>8

n=4: a(n) = 4*a(n-3) for n>5

n=5: a(n) = 12*a(n-3) -32*a(n-6) for n>8

n=6: a(n) = 12*a(n-3) -32*a(n-6) for n>8

n=7: a(n) = 8*a(n-3) for n>5

EXAMPLE

Some solutions for n=4 k=4

..2..2..3..2..2..3....1..1..0..1..1..0....3..2..2..3..2..2....0..2..1..0..1..1

..3..2..2..3..2..2....2..0..0..3..0..0....3..0..3..3..0..3....0..2..0..0..3..3

..3..0..3..3..0..3....1..0..1..1..0..1....2..2..3..2..2..3....1..1..0..1..1..0

..2..2..3..2..2..3....1..1..0..1..1..0....3..2..2..3..2..2....0..1..1..0..1..1

..3..2..2..3..2..2....3..0..0..2..0..0....3..1..3..3..0..3....0..3..0..0..3..0

..0..0..3..3..1..3....1..0..1..1..0..1....2..2..3..2..2..3....1..1..0..1..1..0

KEYWORD

nonn,tabl

AUTHOR

R. H. Hardin, Dec 18 2014

STATUS

approved

A007534 Even numbers that are not the sum of a pair of twin primes.
(Formerly M1306)
+20
16
2, 4, 94, 96, 98, 400, 402, 404, 514, 516, 518, 784, 786, 788, 904, 906, 908, 1114, 1116, 1118, 1144, 1146, 1148, 1264, 1266, 1268, 1354, 1356, 1358, 3244, 3246, 3248, 4204, 4206, 4208 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Conjectured to be complete (although if this were proved it would prove the "twin primes conjecture"!).

No other n < 10^9. - T. D. Noe, Apr 10 2007

Of these 35, the only 5 which are two times a prime (or in A001747) are 4 = 2 * 2, 94 = 2 * 47, 514 = 2 * 257, 1114 = 2 * 557, 1354 = 2 * 677. - Jonathan Vos Post, Mar 06 2010

REFERENCES

Harvey Dubner, Twin Prime Conjectures, Journal of Recreational Mathematics, Vol. 30 (3), 1999-2000.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 132.

LINKS

Table of n, a(n) for n=1..35.

Harvey Dubner, Twin Prime Conjectures, Journal of Recreational Mathematics, Vol. 30 (3), 1999-2000.

Eric Weisstein's World of Mathematics, Twin Primes

Dan Zwillinger, A Goldbach Conjecture Using Twin Primes, Math. Comp. 33, No.147 (1979), p.1071.

Index entries for sequences related to Goldbach conjecture

EXAMPLE

The twin primes < 100 are 3, 5, 7, 11, 13, 17, 19, 29, 31, 41, 43, 59, 61, 71, 73. 94 is in the sequence because no combination of any two numbers from the set just enumerated can be summed to make 94.

MATHEMATICA

p = Select[ Range[ 4250 ], PrimeQ[ # ] && PrimeQ[ # + 2 ] & ]; q = Union[ Join[ p, p + 2 ] ]; Complement[ Table[ n, {n, 2, 4250, 2} ], Union[ Flatten[ Table[ q[ [ i ] ] + q[ [ j ] ], {i, 1, 223}, {j, 1, 223} ] ] ] ]

Complement[Range[2, 4220, 2], Union[Total/@Tuples[Union[Flatten[ Select[ Partition[ Prime[ Range[500]], 2, 1], #[[2]]-#[[1]]==2&]]], 2]]] (* Harvey P. Dale, Oct 09 2013 *)

PROG

(Haskell)

import qualified Data.Set as Set (map, null)

import Data.Set (empty, insert, intersection)

a007534 n = a007534_list !! (n-1)

a007534_list = f [2, 4..] empty 1 a001097_list where

   f xs'@(x:xs) s m ps'@(p:ps)

     | x > m = f xs' (insert p s) p ps

     | Set.null (s `intersection` Set.map (x -) s) = x : f xs s m ps'

     | otherwise = f xs s m ps'

-- Reinhard Zumkeller, Nov 27 2011

CROSSREFS

Cf. A051345.

Cf. A129363 (number of partitions of 2n into the sum of two twin primes).

Cf. A179825.

KEYWORD

nonn,nice

AUTHOR

N. J. A. Sloane, Robert G. Wilson v

STATUS

approved

A252384 T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with every 3X3 subblock row and diagonal sum equal to 0 3 5 6 or 7 and every 3X3 column and antidiagonal sum not equal to 0 3 5 6 or 7 +20
16
578, 897, 540, 1359, 555, 588, 1966, 647, 529, 651, 3020, 771, 632, 570, 785, 4682, 1067, 663, 616, 637, 904, 7109, 1496, 963, 744, 799, 764, 1051, 10880, 1928, 1341, 1091, 916, 984, 903, 1290, 16510, 2662, 1610, 1475, 1305, 1097, 1114, 1117, 1543 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Table starts

..578..897.1359.1966.3020.4682.7109.10880.16510.24980.37998.57542.86746.131187

..540..555..647..771.1067.1496.1928..2662..3856..5074..7024.10213.13505..18776

..588..529..632..663..963.1341.1610..2376..3331..4097..6077..8560.10605..15764

..651..570..616..744.1091.1475.1880..2734..3712..4817..7023..9576.12499..18249

..785..637..799..916.1305.1894.2310..3280..4791..5934..8451.12386.15413..21987

..904..764..984.1097.1667.2356.2769..4222..5992..7136.10911.15524.18561..28419

.1051..903.1114.1361.2031.2778.3495..5195..7123..9045.13466.18506.23568..35117

.1290.1117.1541.1791.2598.3836.4601..6665..9875.11932.17313.25696.31116..45188

.1543.1470.2007.2270.3526.5035.5840..9089.13006.15176.23653.33887.39610..61778

.1902.1843.2417.2976.4492.6189.7723.11638.16053.20114.30334.41885.52547..79278

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..579

FORMULA

Empirical for column k:

k=1: a(n) = 5*a(n-3) -8*a(n-6) +5*a(n-9) -a(n-12) for n>22

k=2: a(n) = 4*a(n-3) -4*a(n-6) +a(n-9) for n>15

k=3: a(n) = 4*a(n-3) -4*a(n-6) +a(n-9) for n>12

k=4: a(n) = 4*a(n-3) -4*a(n-6) +a(n-9) for n>12

k=5: a(n) = 4*a(n-3) -4*a(n-6) +a(n-9) for n>12

k=6: a(n) = 4*a(n-3) -4*a(n-6) +a(n-9) for n>12

k=7: a(n) = 4*a(n-3) -4*a(n-6) +a(n-9) for n>12

Empirical for row n:

n=1: [linear recurrence of order 65] for n>79

n=2: [order 21] for n>30

n=3: a(n) = 4*a(n-3) -4*a(n-6) +a(n-9) for n>17

n=4: a(n) = 4*a(n-3) -4*a(n-6) +a(n-9) for n>14

n=5: a(n) = 4*a(n-3) -4*a(n-6) +a(n-9) for n>14

n=6: a(n) = 4*a(n-3) -4*a(n-6) +a(n-9) for n>15

n=7: a(n) = 4*a(n-3) -4*a(n-6) +a(n-9) for n>14

EXAMPLE

Some solutions for n=4 k=4

..0..0..0..3..0..0....0..1..2..0..1..2....3..2..0..3..0..0....1..2..3..1..2..0

..0..2..1..3..2..1....0..0..0..0..0..0....2..1..0..2..1..0....0..0..3..0..0..0

..2..0..1..2..0..1....2..1..0..2..1..0....3..1..2..3..1..2....1..0..2..1..0..2

..0..0..0..3..0..0....0..1..2..0..1..2....3..0..0..3..0..0....1..2..3..1..2..0

..0..2..1..3..2..1....0..0..0..0..0..0....2..1..0..2..1..0....0..0..3..0..0..0

..2..0..1..2..0..1....2..1..0..2..3..0....3..1..2..3..1..1....1..0..2..1..0..2

KEYWORD

nonn,tabl

AUTHOR

R. H. Hardin, Dec 17 2014

STATUS

approved

A001140 Describe the previous term! (method A - initial term is 4). +20
15
4, 14, 1114, 3114, 132114, 1113122114, 311311222114, 13211321322114, 1113122113121113222114, 31131122211311123113322114, 132113213221133112132123222114, 11131221131211132221232112111312111213322114, 31131122211311123113321112131221123113111231121123222114 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Method A = 'frequency' followed by 'digit'-indication.

A001155, A001140, A001141, A001143, A001145, A001151 and A001154 are all identical apart from the last digit of each term (the seed). This is because digits other than 1, 2 and 3 never arise elsewhere in the terms (other than at the end of each of them) of look-and-say sequences of this type (as is mentioned by Carmine Suriano in A006751). - Chayim Lowen, Jul 16 2015

a(n+1) - a(n) is divisible by 10^5 for n > 5. - Altug Alkan, Dec 04 2015

REFERENCES

S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 452-455.

I. Vardi, Computational Recreations in Mathematica. Addison-Wesley, Redwood City, CA, 1991, p. 4.

LINKS

T. D. Noe, Table of n, a(n) for n=1..20

J. H. Conway, The weird and wonderful chemistry of audioactive decay, in T. M. Cover and Gopinath, eds., Open Problems in Communication and Computation, Springer, NY 1987, pp. 173-188.

S. R. Finch, Conway's Constant [Broken link]

EXAMPLE

The term after 3114 is obtained by saying "one 3, two 1's, one 4", which gives 132114.

MATHEMATICA

RunLengthEncode[ x_List ] := (Through[ {First, Length}[ #1 ] ] &) /@ Split[ x ]; LookAndSay[ n_, d_:1 ] := NestList[ Flatten[ Reverse /@ RunLengthEncode[ # ] ] &, {d}, n - 1 ]; F[ n_ ] := LookAndSay[ n, 4 ][ [ n ] ]; Table[ FromDigits[ F[ n ] ], {n, 1, 11} ] (* Zerinvary Lajos, Mar 21 2007 *)

PROG

(Haskell) cf. Josh Triplett's program for A005051.

import Data.List (group)

a001140 n = a001140_list !! (n-1)

a001140_list = 4 : map say a001140_list where

   say = read . concatMap saygroup . group . show

         where saygroup s = (show $ length s) ++ [head s]

-- Reinhard Zumkeller, Dec 15 2012

(Perl)

# This outputs the first n elements of the sequence, where n is given on the command line.

$s = 4;

for (2..shift @ARGV) {

    print "$s, ";

    $s =~ s/(.)\1*/(length $&).$1/eg;

}

print "$s\n";

## Arne 'Timwi' Heizmann (timwi(AT)gmx.net), Mar 12 2008)

CROSSREFS

Cf. A001155, A005150, A006751, A006715, A001141, A001143, A001145, A001151, A001154.

KEYWORD

nonn,base,easy,nice

AUTHOR

N. J. A. Sloane

STATUS

approved

A111045 Numbers n such that P(4n) is prime, where P(m) is the number of partitions of m. +20
14
1, 9, 33, 42, 47, 53, 54, 110, 324, 534, 627, 642, 683, 728, 792, 1114, 2112, 2228, 2323, 2770, 3007, 3255, 3368, 3760, 4062, 4569, 6139, 7650, 7939, 8138, 8310, 8493, 8674, 9122, 9407, 10345, 11127, 13343, 14713, 15442, 15632, 16358, 16904, 18165, 19303 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..45.

EXAMPLE

If n=110 then P(4*n) = 74878248419470886233 (prime).

MATHEMATICA

Select[ Range[19923], PrimeQ[ PartitionsP[4# ]] &] (* Robert G. Wilson v *)

CROSSREFS

Cf. A000041, A046063, A114165, A111389, A111045, A114166, A111036, A114167, A114168, A114169, A114170.

KEYWORD

nonn

AUTHOR

Parthasarathy Nambi, Nov 11 2005

EXTENSIONS

a(9)-a(37) from Robert G. Wilson v, Nov 14 2005

STATUS

approved

page 1 2 3 4 5 6 7 8 9 10 ... 33

Search completed in 0.268 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified January 8 21:33 EST 2017. Contains 280444 sequences.