login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: author:"oct 14"
Displaying 1-10 of 890 results found. page 1 2 3 4 5 6 7 8 9 10 ... 89
     Sort: relevance | references | number | modified | created      Format: long | short | data
A217900 O.g.f.: Sum_{n>=0} n^n * (n+1)^(n-1) * exp(-n*(n+1)*x) * x^n / n!. +0
61
1, 1, 4, 38, 576, 12052, 322848, 10564304, 408903680, 18288706544, 928575662400, 52780935007968, 3321208845997056, 229232635832433664, 17221699990084108288, 1399139700462119135232, 122235936429355565580288, 11428226675376971405577984, 1138551595285580854471388160 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Compare the g.f. to the LambertW identity:
1 = Sum_{n>=0} (n+1)^(n-1) * exp(-(n+1)*x) * x^n/n!.
More generally, if we define a(n) for fixed integers m, t, and s>=0, by:
(0) Sum_{n>=0} m * n^(s*n) * (n*t+m)^(n-1) * exp(-n^s*(n*t+m)*x) * x^n/n! = Sum_{n>=0} a(n)*x^n
then the coefficients a(n) are integral and may be expressed by:
(1) a(n) = 1/n! * Sum_{k=0..n} m*(-1)^(n-k)*binomial(n,k) * k^(s*n) * (k*t+m)^(n-1).
(2) a(n) = 1/n! * [x^n] Sum_{k>=0} m*k^(s*k)*(k*t+m)^(k-1)*x^k / (1 + k^s*(k*t+m)*x)^(k+1).
(3) a(n) = 1/t^((s-1)*n) * [x^(s*n)] 1 + m*x*(1+m*x)^(n-1) / Product_{k=1..n} (1-k*t*x).
(4) a(n) = 1/t^((s-1)*n) * [x^(s*n)] 1 + m*x*(1-m*x)^(s*n) / Product_{k=1..n} (1-(k*t+m)*x).
LINKS
FORMULA
a(n) = 1/n! * Sum_{k=0..n} (-1)^(n-k)*binomial(n,k) * k^n * (k+1)^(n-1).
a(n) = 1/n! * [x^n] Sum_{k>=0} k^k*(k+1)^(k-1)*x^k / (1 + k*(k+1)*x)^(k+1).
a(n) = [x^n] 1 + x*(1+x)^(n-1) / Product_{k=1..n} (1-k*x).
a(n) = [x^n] 1 + x*(1-x)^(n-1) / Product_{k=1..n} (1-(k+1)*x).
a(n) = A078739(n,n) for n>=1.
a(n) = Sum_{k=0..n-1} binomial(n-1,k) * Stirling2(2*n-k-1,n) for n>0, where Stirling2(n,k) = A008277(n,k). - Paul D. Hanna, Nov 13 2012
a(n) ~ 2^(2*n-1) * n^(n-3/2) / (sqrt(Pi*(1-c)) * exp(n) * (2-c)^(n-1) * c^(n+1/2)), where c = -LambertW(-2*exp(-2)) = 0.4063757399599599... = 2*A106533. - Vaclav Kotesovec, May 09 2014
EXAMPLE
O.g.f.: A(x) = 1 + x + 4*x^2 + 38*x^3 + 576*x^4 + 12052*x^5 + 322848*x^6 +...
where
A(x) = 1 + 1^1*2^0*x*exp(-1*2*x) + 2^2*3^1*exp(-2*3*x)*x^2/2! + 3^3*4^2*exp(-3*4*x)*x^3/3! + 4^4*5^3*exp(-4*5*x)*x^4/4! + 5^5*6^4*exp(-5*6*x)*x^5/5! +...
simplifies to a power series in x with integer coefficients.
MATHEMATICA
a[n_] := 1/n!*Sum[(-1)^(n-k)*Binomial[n, k]*k^n*(k+1)^(n-1), {k, 0, n}]; a[0]=1; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Mar 06 2013 *)
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, m^m*(m+1)^(m-1)*x^m*exp(-m*(m+1)*x+x*O(x^n))/m!), n)}
(PARI) {a(n)=(1/n!)*polcoeff(sum(k=0, n, k^k*(k+1)^(k-1)*x^k/(1+k*(k+1)*x +x*O(x^n))^(k+1)), n)}
(PARI) {a(n)=1/n!*sum(k=0, n, (-1)^(n-k)*binomial(n, k)*k^n*(k+1)^(n-1))}
(PARI) {a(n)=polcoeff(1+x*(1+x)^(n-1)/prod(k=0, n, 1-k*x +x*O(x^n)), n)}
(PARI) {a(n)=polcoeff(1+x*(1-x)^n/prod(k=0, n, 1-(k+1)*x +x*O(x^n)), n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
{a(n)=if(n==0, 1, sum(k=0, n-1, binomial(n-1, k) * Stirling2(2*n-k-1, n)))} \\ Paul D. Hanna, Nov 13 2012
/* PARI Programs for the General Case (START) ...................... */
(PARI) {a(n, m=1, t=1, s=1)=polcoeff(sum(k=0, n, m*k^(s*k)*(t*k+m)^(k-1)*exp(-k^s*(t*k+m)*x+x*O(x^n))*x^k/k!), n)}
(PARI) {a(n, m=1, t=1, s=1)=(1/n!)*polcoeff(sum(k=0, n, m*k^(s*k)*(t*k+m)^(k-1)*x^k/(1+k^s*(t*k+m)*x +x*O(x^n))^(k+1)), n)}
(PARI) {a(n, m=1, t=1, s=1)=1/n!*sum(k=0, n, m*(-1)^(n-k)*binomial(n, k)*k^(s*n)*(t*k+m)^(n-1))}
(PARI) {a(n, m=1, t=1, s=1)=(1/t^((s-1)*n))*polcoeff(1+m*x*(1+m*x)^(n-1)/prod(k=0, n, 1-t*k*x +x*O(x^(s*n))), s*n)}
(PARI) {a(n, m=1, t=1, s=1)=(1/t^((s-1)*n))*polcoeff(1+m*x*(1-m*x)^(s*n)/prod(k=0, n, 1-(t*k+m)*x +x*O(x^(s*n))), s*n)}
/* (END) ........................................................... */
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 14 2012
STATUS
approved
A145609 Numerator of the polynomial A_l(x) = sum_{d=1..l-1} x^(l-d)/d for index l=2n+1 evaluated at x=1. +0
41
3, 25, 49, 761, 7381, 86021, 1171733, 2436559, 14274301, 55835135, 19093197, 1347822955, 34395742267, 315404588903, 9304682830147, 586061125622639, 54062195834749, 54801925434709, 2053580969474233, 2078178381193813 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
The polynomials A_{2n+1}(x) = sum_{d=1..2n} x^(2n+1-d)/d for small n look as follows:
n=1, index = 3: A_3(x) = x/2 + x^2.
n=2, index = 5: A_5(x) = x/4 + x^2/3 + x^3/2 + x^4.
n=3, index = 7: A_7(x) = x/6 + x^2/5 + x^3/4 + x^4/3 + x^5/2 + x^6.
n=4, index = 9: A_9(x) = x/8 + x^2/7 + x^3/6 + x^4/5 + x^5/4 + x^6/3 + x^7/2 + x^8.
LINKS
FORMULA
(1/(2*n+1))*2F1(1, 2*n+1; 2*n+2; 1/m) = Sum_{x>=0} m^(-x)/(x+2n+1) = m^(2n)*arctanh((2m-1)/(2m^2-2m+1)) - A_{2n+1}(m) = m^(2n)*log(m/(m-1)) - A_{2n+1}(m). - Artur Jasinski, Oct 14 2008
It appears that A145609(n)/A145610(n) = H(2*n+2), the harmonic number of order 2*n+2. - Groux Roland, Jan 08 2011
Yes, A145609(n)/A145610(n) = H(2*n+2), as A_l(x) = sum_{d=1..l-1} x^(l-d)/d at x=1 is just sum_{d=1..l-1}1/d = H(l-1), the harmonic number of order (l-1). - Zak Seidov, Jan 09 2014
a(n) = numerator of Integral_{x=0..1} ((1 - x^(2*n))/(1 - x). - Peter Luschny, Sep 28 2017
MAPLE
A := proc(l, x) add(x^(l-d)/d, d=1..l-1) ; end: A145609 := proc(n) numer( A(2*n+1, 1)) ; end: seq(A145609(n), n=1..20) ; # R. J. Mathar, Aug 21 2009
MATHEMATICA
m = 1; aa = {}; Do[k = 0; Do[k = k + m^(2 r + 1 - d)/d, {d, 1, 2 r}]; AppendTo[aa, Numerator[k]], {r, 1, 25}]; aa (* Artur Jasinski *)
CROSSREFS
For denominators see A145610.
KEYWORD
frac,nonn
AUTHOR
Artur Jasinski, Oct 14 2008
EXTENSIONS
Edited, parentheses in front of Gauss. Hypg. Fct. added by R. J. Mathar, Aug 21 2009
STATUS
approved
A076479 a(n) = mu(rad(n)), where mu is the Moebius-function (A008683) and rad is the radical or squarefree kernel (A007947). +0
39
1, -1, -1, -1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Multiplicative: a(1) = 1, a(n) for n >=2 is sign of parity of number of distinct primes dividing n. a(p) = -1, a(pq) = 1, a(pq...z) = (-1)^k, a(p^k) = -1, where p,q,.. z are distinct primes and k natural numbers. - Jaroslav Krizek, Mar 17 2009
a(n) is the unitary Moebius function, i.e., the inverse of the constant 1 function under the unitary convolution defined by (f X g)(n)= sum of f(d)g(n/d), where the sum is over the unitary divisors d of n (divisors d of n such that gcd(d,n/d)=1). - Laszlo Toth, Oct 08 2009
LINKS
Eckford Cohen, Arithmetical functions associated with the unitary divisors of an integer, Math. Zeitschr., Vol. 74 (1960), pp. 66-80.
Jan van de Lune and Robert E. Dressler, Some theorems concerning the number theoretic function omega(n), Journal für die reine und angewandte Mathematik, Vol. 277 (1975), pp. 117-119; alternative link.
FORMULA
a(n) = A008683(A007947(n)).
a(n) = (-1)^A001221(n). Multiplicative with a(p^e) = -1. - Vladeta Jovovic, Dec 03 2002
a(n) = sign(A180403(n)). - Mats Granvik, Oct 08 2010
Sum_{n>=1} a(n)*phi(n)/n^3 = A065463 with phi()=A000010() [Cohen, Lemma 3.5]. - R. J. Mathar, Apr 11 2011
Dirichlet convolution of A000012 with A226177 (signed variant of A074823 with one factor mu(n) removed). - R. J. Mathar, Apr 19 2011
Sum_{n>=1} a(n)/n^2 = A065469. - R. J. Mathar, Apr 19 2011
a(n) = Sum_{d|n} mu(d)*tau_2(d) = Sum_{d|n} A008683(d)*A000005(d) . - Enrique Pérez Herrero, Jan 17 2013
a(A030230(n)) = -1; a(A030231(n)) = +1. - Reinhard Zumkeller, Jun 01 2013
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 - 2p^(-s)). - Álvar Ibeas, Dec 30 2018
Sum_{n>=1} a(n)/n = 0 (van de Lune and Dressler, 1975). - Amiram Eldar, Mar 05 2021
From Richard L. Ollerton, May 07 2021: (Start)
For n>1, Sum_{k=1..n} a(gcd(n,k))*phi(gcd(n,k))*rad(gcd(n,k))/gcd(n,k) = 0.
For n>1, Sum_{k=1..n} a(n/gcd(n,k)))*phi(gcd(n,k))*rad(n/gcd(n,k))*gcd(n,k) = 0. (End)
a(n) = Sum_{d1|n} Sum_{d2|n} mu(d1*d2). - Ridouane Oudra, May 25 2023
MAPLE
A076479 := proc(n)
(-1)^A001221(n) ;
end proc:
seq(A076479(n), n=1..80) ; # R. J. Mathar, Nov 02 2016
MATHEMATICA
Table[(-1)^PrimeNu[n], {n, 50}] (* Enrique Pérez Herrero, Jan 17 2013 *)
PROG
(PARI)
N=66;
mu=vector(N); mu[1]=1;
{ for (n=2, N,
s = 0;
fordiv (n, d,
if (gcd(d, n/d)!=1, next() ); /* unitary divisors only */
s += mu[d];
);
mu[n] = -s;
); };
mu /* Joerg Arndt, May 13 2011 */
/* omitting the line if ( gcd(...)) gives the usual Moebius function */
(PARI) a(n)=(-1)^omega(n) \\ Charles R Greathouse IV, Aug 02 2013
(Haskell)
a076479 = a008683 . a007947 -- Reinhard Zumkeller, Jun 01 2013
(Magma) [(-1)^(#PrimeDivisors(n)): n in [1..100]]; // Vincenzo Librandi, Dec 31 2018
(Python)
from math import prod
from sympy.ntheory import mobius, primefactors
def A076479(n): return mobius(prod(primefactors(n))) # Chai Wah Wu, Sep 24 2021
CROSSREFS
Cf. A174863 (partial sums).
KEYWORD
sign,mult
AUTHOR
Reinhard Zumkeller, Oct 14 2002
STATUS
approved
A145640 Denominator the polynomial A_l(x) = sum_{d=1..l-1} x^(l-d)/d for index l=2n+1 evaluated at x=16. +0
39
1, 3, 5, 35, 315, 3465, 45045, 45045, 255255, 969969, 29393, 2028117, 50702925, 456326325, 13233463425, 820474732350, 4512611027925, 4512611027925, 166966608033225, 12843585233325, 526586994566325, 22643240766351975 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
For numerators see A145639. For general properties of A_l(x) see A145609.
LINKS
MATHEMATICA
m = 16; aa = {}; Do[k = 0; Do[k = k + m^(2 r + 1 - d)/d, {d, 1, 2 r}]; AppendTo[aa, Denominator[k]], {r, 1, 30}]; aa (*Artur Jasinski*)
CROSSREFS
KEYWORD
frac,nonn
AUTHOR
Artur Jasinski, Oct 14 2008
EXTENSIONS
Edited by R. J. Mathar, Aug 21 2009
STATUS
approved
A338156 Irregular triangle read by rows in which row n lists n blocks, where the m-th block consists of A000041(m-1) copies of the divisors of (n - m + 1), with 1 <= m <= n. +0
36
1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 2, 4, 1, 3, 1, 2, 1, 2, 1, 1, 1, 1, 5, 1, 2, 4, 1, 3, 1, 3, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 3, 6, 1, 5, 1, 2, 4, 1, 2, 4, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 2, 3, 6, 1, 5, 1, 5, 1, 2, 4, 1, 2, 4, 1, 2, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
In other words: in row n replace every term of n-th row of A176206 with its divisors.
The terms in row n are also all parts of all partitions of n.
As in A336812 here we introduce a new type of table which shows the correspondence between divisors and partitions. More precisely the table shows the correspondence between all divisors of all terms of the n-th row of A176206 and all parts of all partitions of n, with n >= 1. Both the mentionded divisors and the mentioned parts are the same numbers (see Example section). That is because all divisors of the first A000070(n-1) terms of A336811 are also all parts of all partitions of n.
For an equivalent table for all parts of the last section of the set of partitions of n see the subsequence A336812. The section is the smallest substructure of the set of partitions in which appears the correspondence divisor/part.
From Omar E. Pol, Aug 01 2021: (Start)
The terms of row n appears in the triangle A346741 ordered in accordance with the successive sections of the set of partitions of n.
The terms of row n in nonincreasing order give the n-th row of A302246.
The terms of row n in nondecreasing order give the n-th row of A302247.
For the connection with the tower described in A221529 see also A340035. (End)
LINKS
EXAMPLE
Triangle begins:
[1];
[1,2], [1];
[1,3], [1,2], [1], [1];
[1,2,4], [1,3], [1,2], [1,2], [1], [1], [1];
[1,5], [1,2,4], [1,3], [1,3], [1,2], [1,2], [1,2], [1], [1], [1], [1], [1];
...
For n = 5 the 5th row of A176206 is [5, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1] so replacing every term with its divisors we have the 5th row of this triangle.
Also, if the sequence is written as an irregular tetrahedron so the first six slices are:
[1],
-------
[1, 2],
[1],
-------
[1, 3],
[1, 2],
[1],
[1];
----------
[1, 2, 4],
[1, 3],
[1, 2],
[1, 2],
[1],
[1],
[1];
----------
[1, 5],
[1, 2, 4],
[1, 3],
[1, 3],
[1, 2],
[1, 2],
[1, 2],
[1],
[1],
[1],
[1],
[1];
.
The above slices appear in the lower zone of the following table which shows the correspondence between the mentioned divisors and all parts of all partitions of the positive integers.
The table is infinite. It is formed by three zones as follows:
The upper zone shows the partitions of every positive integer in colexicographic order (cf. A026792, A211992).
The lower zone shows the same numbers but arranged as divisors in accordance with the slices of the tetrahedron mentioned above.
Finally the middle zone shows the connection between the upper zone and the lower zone.
For every positive integer the numbers in the upper zone are the same numbers as in the lower zone.
.
|---|---------|-----|-------|---------|------------|---------------|
| n | | 1 | 2 | 3 | 4 | 5 |
|---|---------|-----|-------|---------|------------|---------------|
| P | | | | | | |
| A | | | | | | |
| R | | | | | | |
| T | | | | | | 5 |
| I | | | | | | 3 2 |
| T | | | | | 4 | 4 1 |
| I | | | | | 2 2 | 2 2 1 |
| O | | | | 3 | 3 1 | 3 1 1 |
| N | | | 2 | 2 1 | 2 1 1 | 2 1 1 1 |
| S | | 1 | 1 1 | 1 1 1 | 1 1 1 1 | 1 1 1 1 1 |
----|---------|-----|-------|---------|------------|---------------|
.
|---|---------|-----|-------|---------|------------|---------------|
| | A181187 | 1 | 3 1 | 6 2 1 | 12 5 2 1 | 20 8 4 2 1 |
| | | | | |/| | |/|/| | |/ |/|/| | |/ | /|/|/| |
| L | A066633 | 1 | 2 1 | 4 1 1 | 7 3 1 1 | 12 4 2 1 1 |
| I | | * | * * | * * * | * * * * | * * * * * |
| N | A002260 | 1 | 1 2 | 1 2 3 | 1 2 3 4 | 1 2 3 4 5 |
| K | | = | = = | = = = | = = = = | = = = = = |
| | A138785 | 1 | 2 2 | 4 2 3 | 7 6 3 4 | 12 8 6 4 5 |
| | | | | |\| | |\|\| | |\ |\|\| | |\ |\ |\|\| |
| | A206561 | 1 | 4 2 | 9 5 3 | 20 13 7 4 | 35 23 15 9 5 |
|---|---------|-----|-------|---------|------------|---------------|
.
|---|---------|-----|-------|---------|------------|---------------|
| | A027750 | 1 | 1 2 | 1 3 | 1 2 4 | 1 5 |
| |---------|-----|-------|---------|------------|---------------|
| | A027750 | | 1 | 1 2 | 1 3 | 1 2 4 |
| |---------|-----|-------|---------|------------|---------------|
| D | A027750 | | | 1 | 1 2 | 1 3 |
| I | A027750 | | | 1 | 1 2 | 1 3 |
| V |---------|-----|-------|---------|------------|---------------|
| I | A027750 | | | | 1 | 1 2 |
| S | A027750 | | | | 1 | 1 2 |
| O | A027750 | | | | 1 | 1 2 |
| R |---------|-----|-------|---------|------------|---------------|
| S | A027750 | | | | | 1 |
| | A027750 | | | | | 1 |
| | A027750 | | | | | 1 |
| | A027750 | | | | | 1 |
| | A027750 | | | | | 1 |
|---|---------|-----|-------|---------|------------|---------------|
.
Note that every row in the lower zone lists A027750.
Also the lower zone for every positive integer can be constructued using the first n terms of the partition numbers. For example: for n = 5 we consider the first 5 terms of A000041 (that is [1, 1, 2, 3, 5] then the 5th slice is formed by a block with the divisors of 5, one block with the divisors of 4, two blocks with the divisors of 3, three blocks with the divisors of 2, and five blocks with the divisors of 1.
Note that the lower zone is also in accordance with the tower (a polycube) described in A221529 in which its terraces are the symmetric representation of sigma starting from the top (cf. A237593) and the heights of the mentioned terraces are the partition numbers A000041 starting from the base.
The tower has the same volume (also the same number of cubes) equal to A066186(n) as a prism of partitions of size 1*n*A000041(n).
The above table shows the correspondence between the prism of partitions and its associated tower since the number of parts in all partitions of n is equal to A006128(n) equaling the number of divisors in the n-th slice of the lower table and equaling the same the number of terms in the n-th row of triangle. Also the sum of all parts of all partitions of n is equal to A066186(n) equaling the sum of all divisors in the n-th slice of the lower table and equaling the sum of the n-th row of triangle.
MATHEMATICA
A338156[rowmax_]:=Table[Flatten[Table[ConstantArray[Divisors[n-m], PartitionsP[m]], {m, 0, n-1}]], {n, rowmax}];
A338156[10] (* Generates 10 rows *) (* Paolo Xausa, Jan 12 2023 *)
PROG
(PARI)
A338156(rowmax)=vector(rowmax, n, concat(vector(n, m, concat(vector(numbpart(m-1), i, divisors(n-m+1))))));
A338156(10) \\ Generates 10 rows - Paolo Xausa, Feb 17 2023
CROSSREFS
Nonzero terms of A340031.
Row n has length A006128(n).
The sum of row n is A066186(n).
The product of row n is A007870(n).
Row n lists the first n rows of A336812 (a subsequence).
The number of parts k in row n is A066633(n,k).
The sum of all parts k in row n is A138785(n,k).
The number of parts >= k in row n is A181187(n,k).
The sum of all parts >= k in row n is A206561(n,k).
The number of parts <= k in row n is A210947(n,k).
The sum of all parts <= k in row n is A210948(n,k).
KEYWORD
nonn,tabf
AUTHOR
Omar E. Pol, Oct 14 2020
STATUS
approved
A166459 Numbers whose sum of digits is 19. +0
34
199, 289, 298, 379, 388, 397, 469, 478, 487, 496, 559, 568, 577, 586, 595, 649, 658, 667, 676, 685, 694, 739, 748, 757, 766, 775, 784, 793, 829, 838, 847, 856, 865, 874, 883, 892, 919, 928, 937, 946, 955, 964, 973, 982, 991, 1099, 1189, 1198, 1279, 1288 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
A007953(a(n)) = 19; number of repdigits = A242627(19) = 1. - Reinhard Zumkeller, Jul 17 2014
LINKS
MATHEMATICA
Select[Range[1500], Total[IntegerDigits[#]]==19&] (* Harvey P. Dale, Jul 19 2011 *)
PROG
(Magma) [n: n in [1..1500] | &+Intseq(n) eq 19]; // Vincenzo Librandi, Sep 13 2013
(Haskell)
a166459 n = a166459_list !! (n-1)
a166459_list = filter ((== 19) . a007953) [0..]
-- Reinhard Zumkeller, Jul 17 2014
CROSSREFS
Cf. A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225(14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A235229 (20).
KEYWORD
nonn,base,easy
AUTHOR
Vincenzo Librandi, Oct 14 2009
STATUS
approved
A051159 Triangular array made of three copies of Pascal's triangle. +0
32
1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 2, 0, 1, 1, 1, 2, 2, 1, 1, 1, 0, 3, 0, 3, 0, 1, 1, 1, 3, 3, 3, 3, 1, 1, 1, 0, 4, 0, 6, 0, 4, 0, 1, 1, 1, 4, 4, 6, 6, 4, 4, 1, 1, 1, 0, 5, 0, 10, 0, 10, 0, 5, 0, 1, 1, 1, 5, 5, 10, 10, 10, 10, 5, 5, 1, 1, 1, 0, 6, 0, 15, 0, 20, 0, 15, 0, 6, 0, 1, 1, 1, 6, 6, 15, 15, 20, 20, 15, 15, 6, 6, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,13
COMMENTS
Computing each term modulo 2 also gives A047999, i.e., a(n) mod 2 = A007318(n) mod 2 for all n. (The triangle is paritywise isomorphic to Pascal's Triangle.) - Antti Karttunen
5th row/column gives entries of A000217 (triangular numbers C(n+1,2)) repeated twice and every other entry in 6th row/column form A000217. 7th row/column gives entries of A000292 (Tetrahedral (or pyramidal) nos: C(n+3,3)) repeated twice and every other entry in 8th row/column form A000292. 9th row/column gives entries of A000332 (binomial coefficients binomial(n,4)) repeated twice and every other entry in 10th row/column form A000332. 11th row/column gives entries of A000389 (binomial coefficients C(n,5)) repeated twice and every other entry in 12th row/column form A000389. - Gerald McGarvey, Aug 21 2004
If Sum_{k=0..n} A(k)*T(n,k) = B(n), the sequence B is the S-D transform of the sequence A. - Philippe Deléham, Aug 02 2006
Number of n-bead black-white reversible strings with k black beads; also binary grids; string is palindromic. - Yosu Yurramendi, Aug 07 2008
Row sums give A016116(n+1). - Yosu Yurramendi, Aug 07 2008 [corrected by Petros Hadjicostas, Nov 04 2017]
Coefficients in expansion of (x + y)^n where x and y anticommute (y x = -x y), that is, q-binomial coefficients when q = -1. - Michael Somos, Feb 16 2009
The sequence of coefficients of a general polynomial recursion that links at w=2 to the Pascal triangle is here w=0. Row sums are {1, 2, 2, 4, 4, 8, 8, 16, 16, 32, 32, 64, ...}. - Roger L. Bagula and Gary W. Adamson, Dec 04 2009
T(n,k) is the number of palindromic compositions of n+1 with exactly k+1 parts. T(6,4) = 3 because we have the following compositions of n+1=7 with length k+1=5: 1+1+3+1+1, 2+1+1+1+2, 1+2+1+2+1. - Geoffrey Critzer, Mar 15 2014 [corrected by Petros Hadjicostas, Nov 03 2017]
Let P(n,k) be the number of palindromic compositions of n with exactly k parts. MacMahon (1893) was the first to prove that P(n,k) = T(n-1,k-1), where T(n,k) are the numbers in this sequence (see the comment above by G. Critzer). He actually proved that, for 1 <= s <= m, we have P(2*m,2*s) = P(2*m,2*s-1) = P(2*m-1, 2*s-1) = bin(m-1, s-1), but P(2*m-1, 2*s) = 0. For the current sequence, this can be translated into T(2*m-1, 2*s-1) = T(2*m-1,2*s-2) = T(2*m-2, 2*s-2) = bin(m-1,s-1), but T(2m-2, 2*s-1) = 0 (valid again for 1 <= s <= m). - Petros Hadjicostas, Nov 03 2017
T is the infinite lower triangular matrix for this sequence; define two others, U and V; let U(n,k)=e_k(-1,2,-3,...,(-1)^n n), where e_k is the k-th elementary symmetric polynomial, and let V be the diagonal matrix A057077 (periodic sequence 1,1,-1,-1). Clearly V^-1 = V. Conjecture: U = U^-1, T = U . V, T^-1 = V . U, and |T| = |U|. - George Beck, Dec 16 2017
Let T*(n,k)=T(n,k) except when n is odd and k=(n+1)/2, where T*(n,k) = T(n,k)+2^((n-1)/2). Thus, T*(n,k) is the number of non-isomorphic symmetric stairs with n cells and k steps, i.e., k-1 changes of direction. See A016116. - Christian Barrientos and Sarah Minion, Jul 29 2018
LINKS
Paul Barry, Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices, Journal of Integer Sequences, 19, 2016, #16.3.5.
Nantel Bergeron, Kelvin Chan, Yohana Solomon, Farhad Soltani, and Mike Zabrocki, Quasisymmetric harmonics of the exterior algebra, arXiv:2206.02065 [math.CO], 2022.
E. Burlachenko, Fractal generalized Pascal matrices, arXiv:1612.00970 [math.NT], 2016. See p. 3.
S. J. Cyvin, B. N. Cyvin, and J. Brunvoll, Unbranched catacondensed polygonal systems containing hexagons and tetragons, Croatica Chem. Acta, 69 (1996), 757-774. See Table 1 on p. 763.
D. E. Davenport, L. W. Shapiro and L. C. Woodson, The Double Riordan Group, The Electronic Journal of Combinatorics, 18(2) (2012).
M. E. Horn, The Didactical Relevance of the Pauli Pascal Triangle, arXiv:physics/0611277 [physics.ed-ph], 2006. [Michael Somos]
F. Al-Kharousi, R. Kehinde, and A. Umar, Combinatorial results for certain semigroups of partial isometries of a finite chain, The Australasian Journal of Combinatorics, Volume 58 (3) (2014), 363-375.
P. A. MacMahon, Memoir on the Theory of the Compositions of Numbers, Phil. Trans. Royal Soc. London A, 184 (1893), 835-901.
FORMULA
T(n, k) = T(n-1, k-1) + T(n-1, k) if n odd or k even, else 0. T(0, 0) = 1.
T(n, k) = T(n-2, k-2) + T(n-2, k). T(0, 0) = T(1, 0) = T(1, 1) = 1.
Square array made by setting first row/column to 1's (A(i, 0) = A(0, j) = 1); A(1, 1) = 0; A(1, j) = A(1, j-2); A(i, 1) = A(i-2, 1); other entries A(i, j) = A(i-2, j) + A(i, j-2). - Gerald McGarvey, Aug 21 2004
Sum_{k=0..n} k * T(n,k) = A093968(n); A093968 = S-D transform of A001477. - Philippe Deléham, Aug 02 2006
Equals 2*A034851 - A007318. - Gary W. Adamson, Dec 31 2007. [Corrected by Yosu Yurramendi, Aug 07 2008]
A051160(n, k) = (-1)^floor(k/2) * T(n, k).
Sum_{k = 0..n} T(n,k)*x^k = A000012(n), A016116(n+1), A056487(n), A136859(n+2) for x = 0, 1, 2, 3 respectively. - Philippe Deléham, Mar 11 2014
G.f.: (1+x+x*y)/(1-x^2-y^2*x^2). - Philippe Deléham, Mar 11 2014
For n,k >= 1, T(n, k) = 0 when n odd and k even; otherwise, T(n, k) = binomial(floor((n-1)/2), floor((k-1)/2)). - Christian Barrientos, Mar 14 2020
From Werner Schulte, Jun 25 2021: (Start)
T(n,k) = T(n-1,k-1) + (-1)^k * T(n-1,k) for 0 < k < n with initial values T(n,0) = T(n,n) = 1 for n >= 0.
Matrix inverse is T^-1(n,k) = (-1)^((n-k)*(n+k+1)/2) * T(n,k) for 0 <= k <= n. (End)
From Peter Bala, Aug 08 2021: (Start)
Double Riordan array ( 1/(1 - x); x/(1 + x), x/(1 - x) ) in the notation of Davenport et al.
G.f. for column 2*n: (1 + x)*x^(2*n)/(1 - x^2)^(n+1); G.f. for column 2*n+1: x^(2*n+1)/(1 - x^2)^(n+1)
Row polynomials: R(2*n,x) = (1 + x^2)^n; R(2*n+1,x) = (1 + x)*(1 + x^2)^n.
The infinitesimal generator of this triangle has the sequence [1, 0, 1, 0, 1, 0, ...] on the main subdiagonal, the sequence [1, 1, 2, 2, 3, 3, 4, 4, ...] on the diagonal immediately below and zeros elsewhere.
Let T denote this lower triangular array. Then T^a, for a in C, is the double Riordan array ( (1 + a*x)/(1 - a*x^2); x/(1 + a*x), (1 + a*x)/(1 - a*x^2) ) with o.g.f. (1 + x*(a + y))/(1 - x^2*(a + y^2)) = 1 + (a + y)*x + (a + y^2)*x^2 + (a^2 + a*y + a*y^2 + y^3)*x^3 + (a^2 + 2*a*y^2 + y^4)*x^4 + ....
The (2*n)-th row polynomial of T^a is (a + y^2)^n; The (2*n+1)-th row polynomial of T^a is (a + y)*(a + y^2)^n. (End)
EXAMPLE
Triangle starts:
{1},
{1, 1},
{1, 0, 1},
{1, 1, 1, 1},
{1, 0, 2, 0, 1},
{1, 1, 2, 2, 1, 1},
{1, 0, 3, 0, 3, 0, 1},
{1, 1, 3, 3, 3, 3, 1, 1},
{1, 0, 4, 0, 6, 0, 4, 0, 1},
{1, 1, 4, 4, 6, 6, 4, 4, 1, 1},
{1, 0, 5, 0, 10, 0, 10, 0, 5, 0, 1},
{1, 1, 5, 5, 10, 10, 10, 10, 5, 5, 1, 1}
... - Roger L. Bagula and Gary W. Adamson, Dec 04 2009
MAPLE
T:= proc(n, k) option remember; `if`(n=0 and k=0, 1,
`if`(n<0 or k<0, 0, `if`(irem(n, 2)=1 or
irem(k, 2)=0, T(n-1, k-1) + T(n-1, k), 0)))
end:
seq(seq(T(n, k), k=0..n), n=0..14); # Alois P. Heinz, Jul 12 2014
MATHEMATICA
T[ n_, k_] := QBinomial[n, k, -1]; (* Michael Somos, Jun 14 2011; since V7 *)
Clear[p, n, x, a]
w = 0;
p[x, 1] := 1;
p[x_, n_] := p[x, n] = If[Mod[n, 2] == 0, (x + 1)*p[x, n - 1], (x^2 + w*x + 1)^Floor[n/2]]
a = Table[CoefficientList[p[x, n], x], {n, 1, 12}]
Flatten[a] (* Roger L. Bagula and Gary W. Adamson, Dec 04 2009 *)
PROG
(PARI) {T(n, k) = binomial(n%2, k%2) * binomial(n\2, k\2)};
(Haskell)
a051159 n k = a051159_tabl !! n !! k
a051159_row n = a051159_tabl !! n
a051159_tabl = [1] : f [1] [1, 1] where
f us vs = vs : f vs (zipWith (+) ([0, 0] ++ us) (us ++ [0, 0]))
-- Reinhard Zumkeller, Apr 25 2013
(SageMath)
@cached_function
def T(n, k):
if k == 0 or k == n: return 1
return T(n-1, k-1) + (-1)^k*T(n-1, k)
for n in (0..12): print([T(n, k) for k in (0..n)]) # Peter Luschny, Jul 06 2021
CROSSREFS
KEYWORD
nonn,tabl,easy,nice
AUTHOR
Michael Somos, Oct 14 1999
STATUS
approved
A075843 Numbers k such that 99*k^2 + 1 is a square. +0
26
0, 1, 20, 399, 7960, 158801, 3168060, 63202399, 1260879920, 25154396001, 501827040100, 10011386405999, 199725901079880, 3984506635191601, 79490406802752140, 1585823629419851199, 31636982181594271840 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
From Wolfdieter Lang, Nov 08 2002: (Start)
Chebyshev's polynomials U(n,x) evaluated at x=10.
The a(n) give all (unsigned, integer) solutions of Pell equation b(n)^2 - 99*a(n)^2 = +1 with b(n)= A001085(n). (End)
For n>=2, a(n) equals the permanent of the (n-1) X (n-1) tridiagonal matrix with 20's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imagianry unit). - John M. Campbell, Jul 08 2011
For n>=1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,19}. - Milan Janjic, Jan 25 2015
REFERENCES
A. H. Beiler, "The Pellian", ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966.
L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400.
Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147.
LINKS
Tanya Khovanova, Recursive Sequences
J. J. O'Connor and E. F. Robertson, Pell's Equation
Eric Weisstein's World of Mathematics, Pell Equation.
FORMULA
a(n) = ((10+3*sqrt(11))^n - (10-3*sqrt(11))^n) / (6*sqrt(11)).
a(n) = 20*a(n-1) - a(n-2), n>=1, a(0)=0, a(1)=1.
a(n) = S(n-1, 20), with S(n, x) := U(n, x/2), Chebyshev's polynomials of the second kind. S(-1, x) := 0. See A049310.
G.f.: x/(1 - 20*x + x^2).
a(n) = sqrt((A001085(n)^2 - 1)/99).
Lim_{n->inf.} a(n)/a(n-1) = 10 + 3*sqrt(11).
a(n+1) = Sum_{k=0..n} A101950(n,k)*19^k. - Philippe Deléham, Feb 10 2012
Product_{n>=1} (1 + 1/a(n)) = 1/3*(3 + sqrt(11)). - Peter Bala, Dec 23 2012
Product_{n>=2} (1 - 1/a(n)) = 3/20*(3 + sqrt(11)). - Peter Bala, Dec 23 2012
MAPLE
seq( simplify(ChebyshevU(n-1, 10)), n=0..20); # G. C. Greubel, Dec 22 2019
MATHEMATICA
Table[GegenbauerC[n-1, 1, 10], {n, 0, 20}] (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *)
CoefficientList[Series[x/(1-20x+x^2), {x, 0, 20}], x] (* Vincenzo Librandi, Dec 24 2012 *)
ChebyshevU[Range[22] -2, 10] (* G. C. Greubel, Dec 22 2019 *)
LinearRecurrence[{20, -1}, {0, 1}, 20] (* Harvey P. Dale, Dec 03 2023 *)
PROG
(Sage) [lucas_number1(n, 20, 1) for n in range(0, 20)] # Zerinvary Lajos, Jun 25 2008
(Sage) [chebyshev_U(n-1, 10) for n in (0..20)] # G. C. Greubel, Dec 22 2019
(Magma) I:=[0, 1]; [n le 2 select I[n] else 20*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Dec 24 2012
(PARI) vector( 22, n, polchebyshev(n-2, 2, 10) ) \\ G. C. Greubel, Dec 22 2019
(GAP) m:=10;; a:=[0, 1];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 22 2019
CROSSREFS
Cf. A001084.
Chebyshev sequence U(n, m): A000027 (m=1), A001353 (m=2), A001109 (m=3), A001090 (m=4), A004189 (m=5), A004191 (m=6), A007655 (m=7), A077412 (m=8), A049660 (m=9), this sequence (m=10), A077421 (m=11), A077423 (m=12), A097309 (m=13), A097311 (m=14), A097313 (m=15), A029548 (m=16), A029547 (m=17), A144128 (m=18), A078987 (m=19), A097316 (m=33).
Cf. A323182.
KEYWORD
nonn,easy
AUTHOR
STATUS
approved
A076467 Perfect powers m^k where m is a positive integer and k >= 3. +0
26
1, 8, 16, 27, 32, 64, 81, 125, 128, 216, 243, 256, 343, 512, 625, 729, 1000, 1024, 1296, 1331, 1728, 2048, 2187, 2197, 2401, 2744, 3125, 3375, 4096, 4913, 5832, 6561, 6859, 7776, 8000, 8192, 9261, 10000, 10648, 12167, 13824, 14641, 15625, 16384, 16807 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
If p|n with p prime then p^3|n.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..10000 (terms n = 1..250 from Reinhard Zumkeller)
FORMULA
For n > 1: GCD(exponents in prime factorization of a(n)) > 2, cf. A124010. - Reinhard Zumkeller, Apr 13 2012
Sum_{n>=1} 1/a(n) = 2 - zeta(2) + Sum_{k>=2} mu(k)*(2 - zeta(k) - zeta(2*k)) = 1.3300056287... - Amiram Eldar, Jul 02 2022
MAPLE
N:= 10^5: # to get all terms <= N
S:= {1, seq(seq(m^k, m = 2 .. floor(N^(1/k))), k=3..ilog2(N))}:
sort(convert(S, list)); # Robert Israel, Sep 30 2015
MATHEMATICA
a = {1}; Do[ If[ Apply[ GCD, Last[ Transpose[ FactorInteger[n]]]] > 2, a = Append[a, n]; Print[n]], {n, 2, 17575}]; a
(* Second program: *)
n = 10^5; Join[{1}, Table[m^k, {k, 3, Floor[Log[2, n]]}, {m, 2, Floor[n^(1/k)]}] // Flatten // Union] (* Jean-François Alcover, Feb 13 2018, after Robert Israel *)
PROG
(Haskell)
a076467 n = a076467_list !! (n-1)
a076467_list = 1 : filter ((> 2) . foldl1 gcd . a124010_row) [2..]
-- Reinhard Zumkeller, Apr 13 2012
(Haskell)
import qualified Data.Set as Set (null)
import Data.Set (empty, insert, deleteFindMin)
a076467 n = a076467_list !! (n-1)
a076467_list = 1 : f [2..] empty where
f xs'@(x:xs) s | Set.null s || m > x ^ 3 = f xs $ insert (x ^ 3, x) s
| m == x ^ 3 = f xs s
| otherwise = m : f xs' (insert (m * b, b) s')
where ((m, b), s') = deleteFindMin s
-- Reinhard Zumkeller, Jun 18 2013
(PARI) is(n)=ispower(n)>2||n==1 \\ Charles R Greathouse IV, Sep 03 2015, edited for n=1 by M. F. Hasler, May 26 2018
From Anatoly E. Voevudko, Sep 29 2015, edited by M. F. Hasler, May 25 2018: (Start)
(PARI) A076467(lim)={my(L=List(1), lim2=logint(lim, 2), m, k); for(k=3, lim2, for(m=2, sqrtnint(lim, k), listput(L, m^k); )); listsort(L, 1); L}
b076467(lim)={my(L=A076467(lim)); for(i=1, #L, print(i , " ", L[i])); } \\ (End)
(PARI) A076467_vec(LIM, S=List(1))={for(x=2, sqrtnint(LIM, 3), for(k=3, logint(LIM, x), listput(S, x^k))); Set(S)} \\ M. F. Hasler, May 25 2018
CROSSREFS
Subsequence of A036966.
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Oct 14 2002
EXTENSIONS
Edited by Robert Israel, Sep 30 2015
STATUS
approved
A087808 a(0) = 0; a(2n) = 2a(n), a(2n+1) = a(n) + 1. +0
26
0, 1, 2, 2, 4, 3, 4, 3, 8, 5, 6, 4, 8, 5, 6, 4, 16, 9, 10, 6, 12, 7, 8, 5, 16, 9, 10, 6, 12, 7, 8, 5, 32, 17, 18, 10, 20, 11, 12, 7, 24, 13, 14, 8, 16, 9, 10, 6, 32, 17, 18, 10, 20, 11, 12, 7, 24, 13, 14, 8, 16, 9, 10, 6, 64, 33, 34, 18, 36, 19, 20, 11, 40, 21, 22, 12 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
N. J. A. Sloane and J. A. Sellers, On non-squashing partitions, Discrete Math., 294 (2005), 259-274.
FORMULA
a(n) = A135533(n)+1-2^(A000523(n)+1-A000120(n)). - Don Knuth, Mar 01 2008
From Antti Karttunen, Oct 07 2016: (Start)
a(n) = A048675(A005940(n+1)).
For all n >= 0, a(A003714(n)) = A048679(n).
For all n >= 0, a(A277020(n)) = n.
(End)
MAPLE
S := 2; f := proc(n) global S; option remember; if n=0 then RETURN(0); fi; if n mod 2 = 0 then RETURN(S*f(n/2)); else f((n-1)/2)+1; fi; end;
MATHEMATICA
a[0]=0; a[n_] := a[n] = If[EvenQ[n], 2*a[n/2], a[(n-1)/2]+1]; Array[a, 76, 0] (* Jean-François Alcover, Aug 12 2017 *)
PROG
(PARI) a(n)=if(n<1, 0, if(n%2==0, 2*a(n/2), a((n-1)/2)+1))
(Haskell)
import Data.List (transpose)
a087808 n = a087808_list !! n
a087808_list = 0 : concat
(transpose [map (+ 1) a087808_list, map (* 2) $ tail a087808_list])
-- Reinhard Zumkeller, Mar 18 2015
(Scheme) (define (A087808 n) (cond ((zero? n) n) ((even? n) (* 2 (A087808 (/ n 2)))) (else (+ 1 (A087808 (/ (- n 1) 2)))))) ;; Antti Karttunen, Oct 07 2016
(Python)
from functools import lru_cache
@lru_cache(maxsize=None)
def A087808(n): return 0 if n == 0 else A087808(n//2) + (1 if n % 2 else A087808(n//2)) # Chai Wah Wu, Mar 08 2022
CROSSREFS
This is Guy Steele's sequence GS(5, 4) (see A135416); compare GS(4, 5): A135529.
A048678(k) is where k appears first in the sequence.
A left inverse of A277020.
Cf. also A277006.
KEYWORD
nonn,easy
AUTHOR
Ralf Stephan, Oct 14 2003
STATUS
approved
page 1 2 3 4 5 6 7 8 9 10 ... 89

Search completed in 0.406 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 09:31 EDT 2024. Contains 371967 sequences. (Running on oeis4.)