login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077421
Chebyshev sequence U(n,11)=S(n,22) with Diophantine property.
29
1, 22, 483, 10604, 232805, 5111106, 112211527, 2463542488, 54085723209, 1187422368110, 26069206375211, 572335117886532, 12565303387128493, 275864339398940314, 6056450163389558415, 132966039255171344816
OFFSET
0,2
COMMENTS
b(n)^2 - 30*(2*a(n))^2 = 1 with the companion sequence b(n)=A077422(n+1).
For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 22's along the main diagonal, and i's along the subdiagonal and the superdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n>=2, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,21}. - Milan Janjic, Jan 25 2015
FORMULA
a(n) = 22*a(n-1) - a(n-1), a(-1)=0, a(0)=1.
a(n) = S(n, 22) with S(n, x) := U(n, x/2) Chebyshev's polynomials of the 2nd kind. See A049310.
a(n) = (ap^(n+1) - am^(n+1))/(ap - am) with ap := 11+2*sqrt(30) and am := 11-2*sqrt(30).
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(n-k, k)*22^(n-2*k).
a(n) = sqrt((A077422(n+1)^2-1)/30)/2.
G.f.: 1/(1-22*x+x^2). - Philippe Deléham, Nov 18 2008
a(n) = Sum_{k, 0<=k<=n} A101950(n,k)*21^k. - Philippe Deléham, Feb 10 2012
Product {n >= 0} (1 + 1/a(n)) = 1/5*(5 + sqrt(30)). - Peter Bala, Dec 23 2012
Product {n >= 1} (1 - 1/a(n)) = 1/11*(5 + sqrt(30)). - Peter Bala, Dec 23 2012
MAPLE
seq( simplify(ChebyshevU(n, 11)), n=0..20); # G. C. Greubel, Dec 23 2019
MATHEMATICA
Table[GegenbauerC[n, 1, 11], {n, 0, 20}] (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *)
CoefficientList[Series[1/(1-22x+x^2), {x, 0, 20}], x] (* Vincenzo Librandi, Dec 24 2012 *)
ChebyshevU[Range[21] -1, 11] (* G. C. Greubel, Dec 23 2019 *)
PROG
(Sage) [lucas_number1(n, 22, 1) for n in range(1, 20)] # Zerinvary Lajos, Jun 25 2008
(Sage) [chebyshev_U(n, 11) for n in (0..20)] # G. C. Greubel, Dec 23 2019
(Magma) I:=[1, 22]; [n le 2 select I[n] else 22*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Dec 24 2012
(PARI) vector( 21, n, polchebyshev(n-1, 2, 11) ) \\ G. C. Greubel, Dec 23 2019
(GAP) m:=11;; a:=[1, 2*m];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 23 2019
CROSSREFS
Chebyshev sequence U(n, m): A000027 (m=1), A001353 (m=2), A001109 (m=3), A001090 (m=4), A004189 (m=5), A004191 (m=6), A007655 (m=7), A077412 (m=8), A049660 (m=9), A075843 (m=10), this sequence (m=11), A077423 (m=12), A097309 (m=13), A097311 (m=14), A097313 (m=15), A029548 (m=16), A029547 (m=17), A144128 (m=18), A078987 (m=19), A097316 (m=33).
Cf. A323182.
Sequence in context: A261135 A158535 A171327 * A207491 A207888 A208111
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Nov 29 2002
STATUS
approved