login
A378090
E.g.f. satisfies A(x) = exp(x * (1-x)^2 * A(x)) / (1-x)^3.
1
1, 4, 23, 181, 1889, 25411, 427615, 8736337, 210911489, 5882285971, 186121646831, 6585885144697, 257640988064641, 11039620794801691, 514147575711741119, 25858553659455655201, 1396703647943164718081, 80633376290492591578147, 4954794080385073122030799
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: exp( -LambertW(-x/(1-x)) )/(1-x)^3.
a(n) = n! * Sum_{k=0..n} (k+1)^(k-1) * binomial(n+2,n-k)/k!.
PROG
(PARI) a(n) = n!*sum(k=0, n, (k+1)^(k-1)*binomial(n+2, n-k)/k!);
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Seiichi Manyama, Nov 16 2024
STATUS
approved