login
A377977
Expansion of the 288th root of the series 3*E_4(x) - 2*E_6(x), where E_4(x) and E_6(x) are the Eisenstein series of weight 4 and 6.
5
1, 6, -5028, 5704188, -7284893010, 9926715853068, -14092613175928308, 20580782244716567592, -30684764269418402550900, 46478269075227117026711730, -71284154421570122590465786956, 110437754516732491586466670733772, -172528135408494997625486967978486588, 271418933884659782820559630827037837908
OFFSET
0,2
COMMENTS
Let R = 1 + x*Z[[x]] denote the set of integer power series with constant term equal to 1. Let P(n) = {g^n, g in R}. The Eisenstein series E_4(x) lies in P(8) and E_6(x) lies in P(12) (Heninger et al.).
We claim that the series 3*E_4(x) - 2*E_6(x) belongs to P(288).
Proof.
E_4(x) = 1 + 240*Sum_{n >= 1} sigma_3(n)*x^n.
E_6(x) = 1 - 504*Sum_{n >= 1} sigma_5(n)*x^n.
Hence, 3*E_4(x) - 2*E_6(x) = 1 - (12^3)*Sum_{n >= 1} (1/12)*(5*sigma_3(n) + 7*sigma_5(n))*x^n belong to R, since the polynomial (1/12)*(5*k^3 + 7*k^5) is integral for integer values of k. See A245380.
Hence, 3*E_4(x) - 2*E_6(x) == 1 (mod 12^3) == 1 (mod (2^6)*(3^3)).
It follows from Heninger et al., Theorem 1, Corollary 2, that the series 3*E_4(x) - 2*E_6(x) belongs to P((2^5)*(3^2)) = P(288). End Proof.
LINKS
N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, arXiv:math/0509316 [math.NT], 2005-2006; J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
MAPLE
with(numtheory):
E := proc (k) local n, t1; t1 := 1 - 2*k*add(sigma[k-1](n)*q^n, n = 1..30)/bernoulli(k); series(t1, q, 30) end:
seq(coeftayl((3*E(4) - 2*E(6))^(1/288), q = 0, n), n = 0..20);
CROSSREFS
Cf. , A004009 (E_4), A013973 (E_6), A108091 ((E_4)^1/8), A109817 ((E_6)^1/12), A245380, A341871 - A341875, A377973, A377974, A377975.
Sequence in context: A099723 A226499 A343096 * A066061 A028366 A305886
KEYWORD
sign,easy
AUTHOR
Peter Bala, Nov 15 2024
STATUS
approved