login
A377396
Expansion of e.g.f. (1 + log(1+x))^3.
1
1, 3, 3, -6, 12, -18, -66, 1320, -15504, 172200, -1965384, 23636016, -301995216, 4107704832, -59444810496, 913681776384, -14882950782720, 256316144325120, -4656243408560640, 89018690328990720, -1787202802367585280, 37603576325804544000, -827595379013405184000
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..3} k! * binomial(3,k) * Stirling1(n,k).
a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k-1) * (4 * k/n - 1) * (k-1)! * binomial(n,k) * a(n-k).
PROG
(PARI) a(n) = sum(k=0, 3, k!*binomial(3, k)*stirling(n, k, 1));
CROSSREFS
Cf. A377397.
Sequence in context: A261954 A112434 A050067 * A309399 A046875 A056494
KEYWORD
sign,easy
AUTHOR
Seiichi Manyama, Oct 27 2024
STATUS
approved