login
A377358
E.g.f. satisfies A(x) = ( 1 - log(1 - x*A(x))/A(x) )^2.
1
1, 2, 4, 22, 194, 2268, 34272, 624804, 13432120, 332078160, 9286572624, 289821031344, 9985648515504, 376489542984384, 15418392593403360, 681562973789926560, 32345053760113660800, 1640243700728870131200, 88516191520113318169344, 5064936155664187593030912
OFFSET
0,2
FORMULA
E.g.f.: B(x)^2, where B(x) is the e.g.f. of A377349.
a(n) = 2 * Sum_{k=0..floor((2*n+2)/3)} (2*n-2*k+1)!/(2*n-3*k+2)! * |Stirling1(n,k)|.
PROG
(PARI) a(n) = 2*sum(k=0, (2*n+2)\3, (2*n-2*k+1)!/(2*n-3*k+2)!*abs(stirling(n, k, 1)));
CROSSREFS
Cf. A377349.
Sequence in context: A019025 A264729 A339781 * A192332 A324603 A322520
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 26 2024
STATUS
approved