login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A377346
Decimal expansion of the midradius of a truncated cuboctahedron (great rhombicuboctahedron) with unit edge length.
3
2, 2, 6, 3, 0, 3, 3, 4, 3, 8, 4, 5, 3, 7, 1, 4, 6, 2, 3, 5, 9, 2, 0, 2, 5, 8, 0, 3, 4, 3, 2, 5, 3, 7, 1, 4, 2, 2, 2, 9, 0, 6, 7, 2, 0, 2, 6, 5, 0, 7, 5, 5, 4, 8, 3, 8, 1, 7, 6, 1, 2, 4, 0, 6, 0, 4, 0, 5, 6, 7, 4, 5, 9, 8, 9, 1, 5, 3, 0, 4, 7, 0, 7, 7, 5, 8, 7, 6, 2, 7
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Great Rhombicuboctahedron.
FORMULA
Equals sqrt(12 + 6*sqrt(2))/2 = sqrt(12 + A010524)/2 = sqrt(3 + 3/sqrt(2)) = sqrt(3 + A230981).
EXAMPLE
2.26303343845371462359202580343253714222906720265...
MATHEMATICA
First[RealDigits[Sqrt[3 + 3/Sqrt[2]], 10, 100]] (* or *)
First[RealDigits[PolyhedronData["TruncatedCuboctahedron", "Midradius"], 10, 100]]
CROSSREFS
Cf. A377343 (surface area), A377344 (volume), A377345 (circumradius).
Cf. A010527 (analogous for a cuboctahedron).
Sequence in context: A342628 A329380 A348146 * A355076 A344007 A130478
KEYWORD
nonn,cons,easy
AUTHOR
Paolo Xausa, Oct 26 2024
STATUS
approved