login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A377344
Decimal expansion of the volume of a truncated cuboctahedron (great rhombicuboctahedron) with unit edge length.
4
4, 1, 7, 9, 8, 9, 8, 9, 8, 7, 3, 2, 2, 3, 3, 3, 0, 6, 8, 3, 2, 2, 3, 6, 4, 2, 1, 3, 8, 9, 3, 5, 7, 7, 3, 0, 9, 9, 9, 7, 5, 4, 0, 6, 2, 5, 5, 2, 7, 7, 2, 7, 3, 0, 2, 4, 4, 7, 3, 5, 1, 6, 3, 3, 1, 8, 7, 0, 2, 5, 4, 6, 9, 8, 4, 6, 9, 4, 9, 8, 5, 4, 3, 9, 0, 5, 4, 2, 5, 4
OFFSET
2,1
LINKS
Eric Weisstein's World of Mathematics, Great Rhombicuboctahedron.
FORMULA
Equals 22 + 14*sqrt(2) = 22 + 14*A002193.
EXAMPLE
41.798989873223330683223642138935773099975406255...
MATHEMATICA
First[RealDigits[22 + 14*Sqrt[2], 10, 100]] (* or *)
First[RealDigits[PolyhedronData["TruncatedCuboctahedron", "Volume"], 10, 100]]
CROSSREFS
Cf. A377343 (surface area), A377345 (circumradius), A377346 (midradius).
Cf. A020775 (analogous for a cuboctahedron, with offset 1).
Cf. A002193.
Sequence in context: A349672 A050411 A010643 * A108906 A193842 A134250
KEYWORD
nonn,cons,easy
AUTHOR
Paolo Xausa, Oct 26 2024
STATUS
approved