login
A377329
E.g.f. satisfies A(x) = 1 - A(x)^2 * log(1 - x*A(x)^2).
1
1, 1, 9, 164, 4590, 174364, 8388634, 489088592, 33523741560, 2642134225416, 235430782725744, 23405320602599616, 2568397523286868080, 308376740778642665856, 40213392368801846121792, 5659917793199595766848000, 855188706536492203489860480, 138068648223418996408877210496
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} (2*n+2*k)!/(2*n+k+1)! * |Stirling1(n,k)|.
PROG
(PARI) a(n) = sum(k=0, n, (2*n+2*k)!/(2*n+k+1)!*abs(stirling(n, k, 1)));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 25 2024
STATUS
approved