login
A377328
E.g.f. satisfies A(x) = 1 + A(x)^2 * (exp(x*A(x)^3) - 1).
2
1, 1, 11, 250, 8789, 420646, 25536083, 1880370598, 162872596937, 16227667154806, 1828467483194975, 229904271890603014, 31913005486577248877, 4847412341607090455110, 799762918909215143560907, 142427688272456020835132518, 27231132645610171996487568017, 5563389652463220933157357670806
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} (3*n+2*k)!/(3*n+k+1)! * Stirling2(n,k).
PROG
(PARI) a(n) = sum(k=0, n, (3*n+2*k)!/(3*n+k+1)!*stirling(n, k, 2));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 25 2024
STATUS
approved