login
A377230
Lexicographically earliest sequence of positive integers a(1), a(2), ... such that for any n >= 0, s(n) = Sum_{k=1..n} 1/(T(k)*a(k)) < 1, T = A000217.
3
2, 1, 2, 2, 3, 5, 23, 806, 519065, 220441054222, 222723684271305542570701, 41974171914555858099300698444579076459265512901, 1510140949639448391630842209382251970116940997822995817347241840058937174456186756365141648201
OFFSET
1,1
LINKS
EXAMPLE
s(0), s(1), ... = 0, 1/2, 5/6, 11/12, 29/30, 89/90, 629/630, ... .
MAPLE
T:= n-> n*(n+1)/2:
s:= proc(n) option remember; `if`(n=0, 0, s(n-1)+1/(T(n)*a(n))) end:
a:= proc(n) option remember; 1+floor(1/((1-s(n-1))*T(n))) end:
seq(a(n), n=1..13);
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 20 2024
STATUS
approved