login
A377172
Primes p such that -3/2 is a primitive root modulo p.
6
17, 23, 37, 41, 43, 47, 67, 89, 109, 113, 137, 139, 157, 163, 167, 191, 229, 233, 239, 257, 263, 277, 283, 311, 349, 353, 359, 379, 383, 397, 421, 449, 479, 503, 521, 523, 541, 547, 569, 571, 593, 599, 613, 619, 641, 647, 661, 719, 733, 739, 743, 757, 761, 787, 809, 811, 839, 853, 857, 859, 863, 877, 887, 911, 929, 953, 977, 983
OFFSET
1,1
COMMENTS
If p is a term in this sequence, then -3/2 is not a square modulo p (i.e., p is in A191059).
Conjecture: this sequence has relative density equal to Artin's constant (A005596) with respect to the set of primes.
PROG
(PARI) forprime(p=5, 10^3, if(znorder(Mod(-3/2, p))==p-1, print1(p, ", ")));
CROSSREFS
Primes p such that +a/2 is a primitive root modulo p: A320384 (a=3), A377174 (a=5), A377176 (a=7), A377178 (a=9).
Primes p such that -a/2 is a primitive root modulo p: this sequence (a=3), A377175 (a=5), A377177 (a=7), A377179 (a=9).
Sequence in context: A080830 A165566 A072184 * A107644 A158710 A103805
KEYWORD
nonn,easy
AUTHOR
Jianing Song, Oct 18 2024
STATUS
approved