%I #10 Oct 21 2024 09:00:06
%S 8,38,637,9759,86221819,28522360751,583791967829,1801511107253,
%T 6467456149881773
%N a(n) is the numerator of the probability that a self-avoiding random walk on the cubic lattice is trapped after n steps.
%H <a href="/plot2a?name1=A377161&name2=A377162&tform1=untransformed&tform2=untransformed&shift=0&radiop1=ratio&drawpoints=true">Plot of a(n)/A377162(n) vs n</a>, using Plot 2.
%F a(n)/A377162(n) = A077818(n) / (5^(n-1) * 3^A077819(n) * 2^A077820(n)).
%e 8/1953125, 38/9765625, 637/58593750, 9759/976562500, 86221819/4687500000000, 28522360751/1687500000000000, 583791967829/22500000000000000, ...
%Y A377162 are the corresponding denominators.
%Y Cf. A001412, A077817, A077818 (see there for more information), A077819, A077820.
%K nonn,frac,walk,hard,more
%O 11,1
%A _Hugo Pfoertner_, Oct 20 2024