login
A377092
a(0) = 0, and for any n > 0, a(n) is the least integer (in absolute value) not yet in the sequence such that the absolute difference of a(n-1) and a(n) is a Fibonacci number (A000045); in case of a tie, preference is given to the positive value.
3
0, 1, -1, 2, 3, -2, -3, -4, 4, 5, 6, 7, -6, -5, -7, -8, -9, -10, 11, 8, 9, 10, -11, -12, -13, -14, -15, -16, -17, 17, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, -27, -19, -18, -20, -21, -22, -23, -24, -25, -26, -28, -29, -30, -31, -32, -33
OFFSET
0,4
COMMENTS
Will every integer appear in the sequence?
EXAMPLE
The first terms are:
n a(n) |a(n)-a(n-1)|
-- ---- -------------
0 0 N/A
1 1 1
2 -1 2
3 2 3
4 3 1
5 -2 5
6 -3 1
7 -4 1
8 4 8
9 5 1
10 6 1
11 7 1
12 -6 13
13 -5 1
14 -7 2
PROG
(PARI) \\ See Links section.
CROSSREFS
KEYWORD
sign,new
AUTHOR
Rémy Sigrist, Oct 16 2024
STATUS
approved