login
A377074
E.g.f. satisfies A(x) = exp( 3 * (exp(x*A(x)^(1/3)) - 1) ).
0
1, 3, 18, 165, 2061, 32811, 637257, 14642193, 389057430, 11747586063, 397565941269, 14912009309445, 614213244344793, 27567329246005971, 1339377910615420638, 70046231354507450073, 3923758699955830877073, 234413127343266493562103, 14878805575508681816632017
OFFSET
0,2
FORMULA
a(n) = 3 * Sum_{k=0..n} (n+3)^(k-1) * Stirling2(n,k).
PROG
(PARI) a(n) = 3*sum(k=0, n, (n+3)^(k-1)*stirling(n, k, 2));
CROSSREFS
Cf. A375877.
Sequence in context: A302585 A107403 A319938 * A053513 A138211 A052668
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 15 2024
STATUS
approved