login
A377052
Antidiagonal-sums of the array A377051(n,k) = n-th term of k-th differences of powers of primes.
8
1, 3, 4, 5, 6, 13, -6, 45, -50, 113, -98, 73, 274, -1159, 3563, -8707, 19024, -36977, 64582, -98401, 121436, -81961, -147383, 860871, -2709964, 7110655, -17077217, 38873213, -85085216, 179965720, -367884935, 725051361, -1372311916, 2481473639, -4257624155
OFFSET
0,2
COMMENTS
These are the row-sums of the triangle-version of A377051.
EXAMPLE
The sixth antidiagonal of A377051 is (8, 1, -1, -2, -3, -4, -5), so a(6) = -6.
MATHEMATICA
nn=20;
t=Table[Differences[NestList[NestWhile[#+1&, #+1, !PrimePowerQ[#]&]&, 1, 2*nn], k], {k, 0, nn}];
Total/@Table[t[[j, i-j+1]], {i, nn}, {j, i}]
CROSSREFS
The version for primes is A140119, noncomposites A376683, composites A377034.
For squarefree numbers we have A377039, nonsquarefree A377047.
These are the antidiagonal-sums of A377051.
The unsigned version is A377053.
For leaders we have A377054, for primes A007442 or A030016.
For first zero-positions we have A377055.
A version for partitions is A377056, cf. A175804, A053445, A281425, A320590.
A000040 lists the primes, differences A001223, seconds A036263.
A001597 lists perfect-powers, complement A007916.
A023893 and A023894 count integer partitions into prime-powers, factorizations A000688.
Sequence in context: A361081 A213206 A299496 * A070981 A107228 A377053
KEYWORD
sign,new
AUTHOR
Gus Wiseman, Oct 22 2024
STATUS
approved