login
A376869
Expansion of g.f. exp(Sum_{n>=1} A061163(n)*t^n/n).
0
1, 630, 891285, 1654468410, 3510378217530, 8062345916976876, 19512437110988445005, 49011998362940952903570, 126572647331085036145017230, 333972707681972700439601909620, 896449866774126643993004643968130, 2440147600216903599224231295951096900, 6719826062906171491705313637277701498260
OFFSET
0,2
FORMULA
O.g.f.(t) = g satisfies the algebraic equation of order 30 in the form: 1 + Sum_{n=1..30} p(n,t)*g^n = 0, where p(n,t) are polynomials of t of order n with integer coefficients. For example p(15,t) = 2*t^9*(77558760*t^6 - 1112153600*t^5 - 2309989894*t^4 + 784164428*t^3 + 6287761*t^2 - 9848*t + 3)
MAPLE
Digits:=40;
series(exp(630*t*hypergeom([1, 1, 11/10, 13/10, 17/10, 19/10], [5/4, 3/2, 7/4, 2, 2], 3125*t)), t=0, 16);
1, seq(coeff(%, t^kk), kk=1..15);
CROSSREFS
Cf. A061163.
Sequence in context: A058832 A366489 A225390 * A061163 A045168 A270802
KEYWORD
nonn
AUTHOR
Karol A. Penson, Oct 07 2024
STATUS
approved