login
A376754
Length of n-th run of primes in A376198.
9
2, 3, 4, 8, 13, 24, 43, 78, 142, 261, 479, 894, 1674, 3118, 5873, 11102, 20992, 39830, 75906, 144652, 276720, 529865, 1016535, 1954167, 3761091, 7250277, 13993031, 27042169, 52313384, 101320082, 196422988, 381154209, 740280217, 1438969498, 2799310690, 5449726356
OFFSET
1,1
COMMENTS
Theorem: a(n) is the number of steps needed for the prime A376751(n) to "double" in the normal sequence of primes. More precisely, if A376751(n) = prime(j), then a(n) = A063124(j). For example, A376751(8) = 521 = prime(98), and A063124(98) = 78 = a(8). (The result seems to be off by 1 at n = 4, for reasons I don't understand yet.) - N. J. A. Sloane, Oct 04 2024
PROG
(Python) # uses code in A376750
print([out[4] for out in list(islice(A376750_4gen(), 15))]) # Michael S. Branicky, Oct 03 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 03 2024.
EXTENSIONS
a(14)-a(33) from Michael S. Branicky, Oct 04 2024
a(34)-a(36) from Michael S. Branicky, Oct 07 2024
STATUS
approved