login
A376560
Points of upward concavity in the sequence of perfect-powers (A001597). Positives of A376559.
4
1, 3, 4, 6, 8, 9, 10, 11, 12, 15, 16, 17, 20, 22, 23, 26, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 53, 54, 55, 57, 58, 60, 61, 62, 63, 64, 65, 67, 68, 69, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91
OFFSET
1,2
COMMENTS
These are points at which the second differences are positive.
Perfect-powers (A001597) are numbers with a proper integer root.
Note that, for some sources, upward concavity is negative curvature.
EXAMPLE
The perfect powers (A001597) are:
1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, 144, 169, 196, ...
with first differences (A053289):
3, 4, 1, 7, 9, 2, 5, 4, 13, 15, 17, 19, 21, 4, 3, 16, 25, 27, 20, 9, 18, 13, 33, ...
with first differences (A376559):
1, -3, 6, 2, -7, 3, -1, 9, 2, 2, 2, 2, -17, -1, 13, 9, 2, -7, -11, 9, -5, 20, 2, ...
with positive positions (A376560):
1, 3, 4, 6, 8, 9, 10, 11, 12, 15, 16, 17, 20, 22, 23, 26, 27, 28, 31, 32, 33, 34, ...
MATHEMATICA
perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All, 2]]>1;
Join@@Position[Sign[Differences[Select[Range[1000], perpowQ], 2]], 1]
CROSSREFS
The version for A000002 is A022297, complement A025505. See also A054354, A376604.
For first differences we have A053289, union A023055, firsts A376268, A376519.
For primes instead of perfect-powers we have A258025.
These are positions of positive terms in A376559.
For downward concavity we have A376561 (probably the complement).
A001597 lists the perfect-powers.
A064113 lists positions of adjacent equal prime gaps.
A333254 gives run-lengths of differences between consecutive primes.
Second differences: A036263 (prime), A073445 (composite), A376559 (perfect-power), A376562 (non-perfect-power), A376590 (squarefree), A376593 (nonsquarefree), A376596 (prime-power), A376599 (non-prime-power).
Sequence in context: A121543 A080702 A156167 * A090864 A118300 A263098
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 30 2024
STATUS
approved