login
A376465
a(n) = Sum_{k = 0..n} binomial(n, k)^2*binomial(n+k, k)^2*A108625(n-1 k).
1
1, 5, 289, 32909, 4846001, 824723005, 154077084505, 30725590395197, 6429986799134257, 1396511202452212733, 312375607924873231289, 71567605248444374973205, 16725718218774077760354953, 3974882968204513021199112653, 958241214962583413382405975337, 233879553339714596653197104362909
OFFSET
0,2
COMMENTS
The sequence of Apéry numbers A005259 defined by A005259(n) = Sum_{k = 0..n} binomial(n, k)^2*binomial(n+k, k)^2 satisfies the pair of supercongruences
1) A005259(n*p^r) == A005259(n*p^(r-1)) (mod p^(3*r)) for all primes p >= 5 and all positive integers n and r
2) A005259(n*p^r - 1) == A005259(n*p^(r-1) - 1) (mod p^(3*r)) for all primes p >= 5 and all positive integers n and r.
We conjecture that the present sequence satisfies the same pair of supercongruences. Some examples are given below.
EXAMPLE
Examples of supercongruences:
a(11) - a(1) = 71567605248444374973205 - 5 = (2^4)*(5^2)*(11^3)*19*56040893*126246629 == 0 (mod 11^3).
a(10) - a(0) = 312375607924873231289 - 1 = (2^3)*(11^3)*17*1725679541724893 == 0 (mod 11^3).
MAPLE
A108625(n, k) := add(binomial(n, i)^2 * binomial(n+k-i, k-i), i = 0..k):
a(n) := add(binomial(n, k)^2*binomial(n+k, k)^2*A108625(n-1, k), k = 0..n):
seq(a(n), n = 0..25);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Sep 25 2024
STATUS
approved