OFFSET
0,2
COMMENTS
The sequence of Apéry numbers A005258 defined by A005258(n) = Sum_{k = 0..n} binomial(n, k)^2*binomial(n+k, k) satisfies the pair of supercongruences
1) A005258(n*p^r) == A005258(n*p^(r-1)) (mod p^(3*r)) for all primes p >= 5 and all positive integers n and r
and
2) A005258(n*p^r - 1) == A005258(n*p^(r-1) - 1) (mod p^(3*r)) for all primes p >= 5 and all positive integers n and r.
We conjecture that the present sequence satisfies the same pair of supercongruences. Some examples are given below.
EXAMPLE
Examples of supercongruences:
a(11) - a(1) = 60519806861966105 - 5 = (2^2)*(3^2)*(5^2)*(11^3)*197*256454747 == 0 (mod 11^3).
a(10) - a(0) = 1180189308268609 - 1 = (2^6)*3*(11^3)*37*2789*44753 == 0 (mod 11^3).
MAPLE
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Sep 24 2024
STATUS
approved