OFFSET
1,2
COMMENTS
This sequence and A376453 partition the positive integers.
Conjecture: if (b(n)) denotes the complement of this sequence, then {b(n+1)-b(n) : n>=1} = {2,3,4,5}.
FORMULA
{a(n+1) - a(n) : n >= 1} = {1,2}.
MATHEMATICA
greedy[list_, n_] := Reap[FoldList[(Sow[Quotient[#1, #2]]; Mod[#1, #2]) &, n, Reverse[list]]][[2, 1]];
seq = Table[Floor[((n + 1)^2)/4], {n, 30}]; (* A002620 *)
t1 = Table[FromDigits[greedy[seq, n]], {n, Last[seq]}];
d = Map[Last, Map[First, RealDigits[t1, 10]]] (* A376450 *)
p0 = Flatten[Position[d, 0]] (* this sequence *)
p1 = Flatten[Position[d, 1]] (* A376453 *)
(* Peter J. C. Moses, Oct 18 2012; from A214973 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Clark Kimberling, Sep 28 2024
STATUS
approved