login
A376393
Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 + log(1-x))^3 ).
4
1, 3, 33, 669, 20130, 808902, 40799514, 2480325810, 176637134184, 14428585258896, 1330156753687152, 136632403748954088, 15476220160149512160, 1916493979349783418192, 257601843144279267685056, 37352685483321694825767120, 5812026059839341212943591168, 965974072760231560672817681280
OFFSET
0,2
FORMULA
E.g.f. A(x) satisfies A(x) = 1/(1 + log(1 - x*A(x)))^3.
E.g.f.: B(x)^3, where B(x) is the e.g.f. of A367139.
a(n) = (3/(3*n+3)!) * Sum_{k=0..n} (3*n+k+2)! * |Stirling1(n,k)|.
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(1+log(1-x))^3)/x))
(PARI) a(n) = 3*sum(k=0, n, (3*n+k+2)!*abs(stirling(n, k, 1)))/(3*n+3)!;
CROSSREFS
Cf. A354122.
Sequence in context: A336636 A364242 A376390 * A091462 A340971 A326328
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 22 2024
STATUS
approved