login
A376234
Decimal expansion of log_2(1/2 + sqrt(1/4 + log_3(2))).
0
5, 2, 4, 6, 4, 4, 0, 2, 9, 5, 4, 6, 5, 4, 5, 1, 9, 2, 9, 5, 8, 5, 6, 1, 9, 8, 1, 0, 4, 3, 2, 0, 3, 0, 4, 9, 3, 9, 4, 3, 7, 6, 5, 9, 1, 8, 8, 4, 0, 7, 0, 4, 8, 9, 6, 0, 4, 3, 2, 4, 5, 2, 0, 1, 2, 5, 6, 3, 0, 6, 7, 4, 0, 4, 0, 4, 1, 0, 1, 4, 7, 9, 5, 4, 8, 6, 5, 1, 2, 7, 4, 3, 0, 5, 6, 2, 4, 3, 6, 9, 4, 3, 0, 0, 6, 7, 5, 6, 0, 9, 1, 6, 5, 8, 3, 5, 4, 3, 7, 8, 4, 8, 2, 6, 9, 6, 4, 5, 7, 4, 2, 6, 2, 1, 5, 1, 6, 7, 3, 3, 9, 4, 2, 1, 6, 0, 1, 0, 1, 1
OFFSET
0,1
COMMENTS
Unique real solution to 2^3^4^x = 4^3^2^x.
EXAMPLE
0.5246440295465451929585619810432030493943765918840704896043245201256306740404101...
MATHEMATICA
First[RealDigits[Log2[1/2 + Sqrt[1/4 + Log[3, 2]]], 10, 100]] (* Paolo Xausa, Oct 01 2024 *)
PROG
(PARI) localprec(9+ N=150); digits(log(sqrt(log(2)/log(3)+1/4)+.5)/log(2)\10^-N)
CROSSREFS
Sequence in context: A177148 A188739 A308171 * A265287 A329477 A257701
KEYWORD
nonn,cons
AUTHOR
M. F. Hasler, Sep 30 2024
STATUS
approved