login
A376223
a(n) = Sum_{i=1..q-1} d(i)^i where d(i) are the q sorted divisors of A376222(n).
1
5, 353, 739, 2207, 6869, 1381, 226991, 3939372150671, 24439, 68947, 389027, 493049, 12289, 148927, 35726471189, 12457, 2685629, 4330757, 1442923, 103993, 2248117, 24919, 11089577, 74820287157480518691978649, 12008999, 1225093, 205549, 104113, 21253943, 22665197
OFFSET
1,1
COMMENTS
By the definition of A376222 all terms are prime.
EXAMPLE
a(4) = 2207 because A376222(4) = 39 and the proper divisors of 39 are {1,3,13} with 1^1 + 3^2 + 13^3 = 2207.
MAPLE
with(numtheory):nn:=900:
for n from 1 to nn do:
d:=divisors(n):n0:=nops(d):p:=sum(‘d[k]^k’, ‘k’=1..n0-1):
if isprime(p)
then
printf(`%d, `, p):
else
fi:
od:
CROSSREFS
Sequence in context: A158105 A203527 A235725 * A332135 A225578 A172014
KEYWORD
nonn
AUTHOR
Michel Lagneau, Sep 16 2024
STATUS
approved