login
E.g.f. A(x) satisfies: A'(x) = 1 + A(x)*A'(x)^4.
2

%I #18 Sep 17 2024 18:03:35

%S 1,1,9,165,4629,175689,8424801,488756205,33292495341,2605108910481,

%T 230300167685049,22701604019859765,2468971586334241989,

%U 293687751861227612889,37930838135497768301841,5286141242516127169100925,790686768925097978507354781,126349187477795223746580576801

%N E.g.f. A(x) satisfies: A'(x) = 1 + A(x)*A'(x)^4.

%C In general, if k > 1 and e.g.f. A(x) satisfies: A'(x) = 1 + A(x)*A'(x)^k, then a(n) ~ k^(k/2 + 1) * (k^(k+1)*(k+1))^(n - 3/2) * n^(n-2) / ((k-1)^((k+3)/2) * ((k-1)^(k+1) + k^k)^(n - 3/2) * exp(n)). - _Vaclav Kotesovec_, Sep 17 2024

%H Paul D. Hanna, <a href="/A376174/b376174.txt">Table of n, a(n) for n = 1..300</a>

%F E.g.f. A(x) = Sum_{n>=1} a(n)*x^n/n! satisfies:

%F (1) A(x) = Series_Reversion( Integral( dx/D(x) ) ) where D(x) = 1 + x*D(x)^4 is the g.f. of A002293.

%F (2) A'(x) = Sum_{n>=0} A002293(n)*A(x)^n where A002293(n) = binomial(4*n,n)/(3*n+1).

%F (3) A'(x) = 1 + A(x)*A'(x)^4.

%F (4) A'(x) = 1/(1 - A(x)*A'(x)^3).

%F (5) A(x) = x + Sum_{n>=0} d^n/dx^n G(x)^(n+1)/(n+1)!, where G(x) = Integral( x*D(x)^3 dx ) and D(x) = 1 + x*D(x)^4.

%F (6) A(x - B(x)) = x where B(x) = Sum_{n>=0} binomial(4*n+2,n) * x^(n+2) / ((n+1)*(n+2)).

%F a(n) ~ 2^(10*n-9) * 5^(n - 3/2) * n^(n-2) / (3^(7/2) * exp(n) * 499^(n - 3/2)). - _Vaclav Kotesovec_, Sep 17 2024

%e E.g.f.: A(x) = x + x^2/2! + 9*x^3/3! + 165*x^4/4! + 4629*x^5/5! + 175689*x^6/6! + 8424801*x^7/7! + 488756205*x^8/8! + 33292495341*x^9/9! + ...

%e where A'(x) = 1 + A(x)*A'(x)^4.

%e Also,

%e A'(x) = 1 + A(x) + 4*A(x)^2 + 22*A(x)^3 + 140*A(x)^4 + 969*A(x)^5 + 7084*A(x)^6 + 53820*A(x)^7 + ... + A002293(n)*A(x)^n + ...

%e RELATED SERIES.

%e Series D(x) = 1 + x*D(x)^4 begins

%e D(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 + 53820*x^7 + ... + A002293(n)*x^n + ...

%e where Integral( dx/D(x) ) = x - x^2/2! - 6*x^3/3! - 90*x^4/4! - 2184*x^5/5! - 73440*x^6/6! - 3160080*x^7/7! - 165765600*x^8/8! + ...

%e and A(x) = Series_Reversion( Integral( dx/D(x) ) ).

%e A'(x)^4 = 1 + 4*x + 48*x^2/2! + 1008*x^3/3! + 30672*x^4/4! + 1229616*x^5/5! + 61348752*x^6/6! + 3668121072*x^7/7! + ...

%t nmax = 20; B[_] = 1; Do[B[x_] = 1 + Integrate[B[x], x]*B[x]^4 + O[x]^nmax // Normal, nmax]; A[x_] = Integrate[B[x], x]; CoefficientList[A[x]/x, x] * Range[nmax]! (* _Vaclav Kotesovec_, Sep 17 2024 *)

%o (PARI) /* A'(x) = 1 + A(x)*A'(x)^4 */

%o {a(n) = my(A=x); for(i=1, n, A = intformal(1 + A*(A')^4 + x*O(x^n))); n!*polcoeff(A, n)}

%o for(n=1, 20, print1(a(n), ", "))

%o (PARI) /* A(x) = Series_Reversion( Integral( dx/D ) ) where D = 1 + x*D^4 */

%o {a(n) = my(D = ((1/x)*serreverse(x/(1 + x + x*O(x^n))^4))^(1/4), A); A = serreverse(intformal(1/D)); n!*polcoeff(A, n)}

%o for(n=1, 20, print1(a(n), ", "))

%Y Cf. A180254, A376175, A002293.

%K nonn

%O 1,3

%A _Paul D. Hanna_, Sep 14 2024