login
A376136
Primes p_1 where products m of k = 5 consecutive primes p_1..p_k are such that only p_1 < m^(1/k).
3
3229, 3271, 4759, 6173, 6803, 6917, 8389, 8971, 9439, 10433, 11743, 12011, 12853, 12983, 13967, 14107, 14593, 15683, 16033, 16141, 18013, 18097, 19183, 19333, 21283, 21347, 21529, 22573, 22817, 23633, 23719, 25261, 27701, 27919, 28229, 29537, 30593, 31397, 31699
OFFSET
1,1
COMMENTS
Primes p_1 are such that the difference p_2-p_1 is larger than the sum of the differences p_(j+1)-p_j for j < k.
Does not intersect A022006 or A022007.
LINKS
MATHEMATICA
k = 5; s = {1}~Join~Prime[Range[k - 1]]; Reap[Do[s = Append[Rest[s], Prime[i + k - 1]]; r = Surd[Times @@ s, k]; If[Count[s, _?(# < r &)] == 1, Sow[Prime[i]] ], {i, 32000}][[-1, 1]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael De Vlieger, Sep 17 2024
STATUS
approved