OFFSET
0,3
LINKS
John Tyler Rascoe, Rows n = 0..7, flattened
FORMULA
C({s},x) = Sum_{i in {s}} (C({s}-{i},x)*x^i)/(1 - Sum_{i in {s}} (x^i)) with C({},x) = 1.
EXAMPLE
For row n = 2, C({1,2},x) = (-2*x^3 - x^4)/(1 + x + 2*x^2 - x^3 - x^4).
Triangle begins
k=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n=0 1;
n=1 . 1;
n=2 . . . -2, -1;
n=3 . . . . . . -6, 0, 10, 16, 4, -11, -17, -12, -5, -1;
PROG
(PARI)
C_x(s)={my( g=if(#s <1, 1, sum(i=1, #s, C_x(s[^i]) * x^(s[i]) )/(1-sum(i=1, #s, x^(s[i]))))); return(g)}
A376117_row(n)={my(t=n*(n+1)/2, c=C_x([1..n]), d=poldegree(numerator(c))-t, z=vector(d+1)); for(k=0, d, z[k+1]=polcoeff(numerator(c), k+t)); z}
CROSSREFS
KEYWORD
sign,tabf
AUTHOR
John Tyler Rascoe, Sep 10 2024
STATUS
approved