login
a(0) = 1; a(n) = (1/3) * Sum_{k=1..n} (4^k-1) * a(k-1) * a(n-k).
2

%I #5 Sep 11 2024 00:45:04

%S 1,1,6,137,11938,4095882,5599192492,30588428274345,668265444025582410,

%T 58395039572032120897838,20410643002515607839683651348,

%U 28536181214271796693200339702494058,159585939576145805663910944364491926768148,3569877304419418296304606194938539586766279745396

%N a(0) = 1; a(n) = (1/3) * Sum_{k=1..n} (4^k-1) * a(k-1) * a(n-k).

%F G.f. A(x) satisfies: A(x) = 3 / (3 + x * A(x) - 4 * x * A(4*x)).

%t a[0] = 1; a[n_] := a[n] = (1/3) Sum[(4^k - 1) a[k - 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 13}]

%t nmax = 13; A[_] = 0; Do[A[x_] = 3/(3 + x A[x] - 4 x A[4 x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

%Y Cf. A015085, A337556, A376111, A376112.

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, Sep 10 2024