login
A376043
a(1)=1; thereafter a(n) = smallest positive integer such that Sum_{i=2..n} a(i-1)/a(i) is less than 1.
3
1, 2, 5, 51, 26011, 345051781711, 1579413237848133436283359452811, 11418342003878959546444158608577711406460297342648955785594970237449922006239911
OFFSET
1,2
LINKS
N. J. A. Sloane, A Nasty Surprise in a Sequence and Other OEIS Stories, Experimental Mathematics Seminar, Rutgers University, Oct 10 2024, Youtube video; Slides [Mentions this sequence]
FORMULA
a(1)=1; for n>1, a(n) = a(n-1)*A376044(n-2) + 1.
More directly, a(1) = 1; thereafter a(n) = 1 + a(n-1) * Prod_{i=1..n-1} a(i). - N. J. A. Sloane, Sep 12 2024
MAPLE
# To get M terms of A376043 and A376044:
a:=Array(0..100, 0): b:=Array(0..100, 0): e:=Array(0..100, 0):
e[0]:=1; a[0]:=1; e[1]:=2; b[1]:=1; a[1]:=2;
M:=8;
for n from 2 to M do
b[n]:=a[n-1];
e[n]:=e[n-1]*(b[n]*e[n-1]+1);
a[n]:=b[n]*e[n-1]+1;
od:
[seq(b[n], n=1..M)]; # this sequence
[seq(e[n], n=1..M)]; # A376044
MATHEMATICA
a[1] = 1; a[n_] := a[n] = 1 + Floor[a[n-1]/(1 - Sum[a[i-1]/a[i], {i, 2, n-1}])]; Array[a, 8] (* Amiram Eldar, Sep 08 2024 *)
CROSSREFS
Cf. A376044.
Sequence in context: A004098 A356492 A208206 * A005114 A216079 A206584
KEYWORD
nonn,changed
AUTHOR
N. J. A. Sloane, Sep 07 2024
STATUS
approved