login
A375953
Expansion of e.g.f. 1 / (1 + 2 * log(1 - x))^(5/2).
3
1, 5, 40, 430, 5770, 92590, 1726940, 36682200, 873793620, 23061929940, 667868085360, 21052931727240, 717531427466280, 26289935772108120, 1030422613932910800, 43018144091244322560, 1905711682795871222160, 89284805444478025826640
OFFSET
0,2
FORMULA
a(n) = (1/3) * Sum_{k=0..n} A001147(k+2) * |Stirling1(n,k)|.
MATHEMATICA
nmax=17; CoefficientList[Series[1 / (1 + 2 * Log[1 - x])^(5/2), {x, 0, nmax}], x]*Range[0, nmax]! (* Stefano Spezia, Sep 03 2024 *)
PROG
(PARI) a001147(n) = prod(k=0, n-1, 2*k+1);
a(n) = sum(k=0, n, a001147(k+2)*abs(stirling(n, k, 1)))/3;
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 03 2024
STATUS
approved