%I #11 Sep 02 2024 08:38:16
%S 1,2,12,124,1846,36128,879252,25637680,872159952,33933231696,
%T 1486845891696,72473120203680,3890486148311040,228103117063828992,
%U 14504759878784601600,994346460412330358016,73107707092779695687040,5738844073788385570644480
%N E.g.f. satisfies A(x) = 1 / (1 + log(1 - x * A(x)^(1/2)))^2.
%F E.g.f.: B(x)^2, where B(x) is the e.g.f. of A052802.
%F E.g.f.: A(x) = ( (1/x) * Series_Reversion(x * (1 + log(1-x))) )^2.
%F a(n) = (2/(n+2)!) * Sum_{k=0..n} (n+k+1)! * |Stirling1(n,k)|.
%o (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace((serreverse(x*(1+log(1-x)))/x)^2))
%o (PARI) a(n) = 2*sum(k=0, n, (n+k+1)!*abs(stirling(n, k, 1)))/(n+2)!;
%Y Cf. A052802, A375900.
%Y Cf. A052801.
%K nonn
%O 0,2
%A _Seiichi Manyama_, Sep 01 2024